aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xcontour.py171
-rwxr-xr-xcontour_emcee.py229
-rwxr-xr-xplot_sens.py84
-rwxr-xr-xplot_sens_sourcescan.py411
-rw-r--r--utils/misc.py11
-rw-r--r--utils/plot.py53
6 files changed, 134 insertions, 825 deletions
diff --git a/contour.py b/contour.py
index 35119e8..5dc3c98 100755
--- a/contour.py
+++ b/contour.py
@@ -20,10 +20,10 @@ from utils import fr as fr_utils
from utils import gf as gf_utils
from utils import llh as llh_utils
from utils import misc as misc_utils
-from utils import mn as mn_utils
+from utils import mcmc as mcmc_utils
from utils import plot as plot_utils
from utils.enums import str_enum
-from utils.enums import DataType, Likelihood, ParamTag, PriorsCateg
+from utils.enums import DataType, Likelihood, MCMCSeedType, ParamTag, PriorsCateg
from utils.param import Param, ParamSet, get_paramsets
from pymultinest import Analyzer, run
@@ -35,11 +35,19 @@ def define_nuisance():
tag = ParamTag.NUISANCE
lg_prior = PriorsCateg.LIMITEDGAUSS
nuisance.extend([
- Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
- Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
- Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
- Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag),
- Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
+ # Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
+ # Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, prior=lg_prior, tag=tag),
+ Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, tag=tag),
+ Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, tag=tag),
+ Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0., 10.], std=0.1, tag=tag),
+ Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0., 20.], std=1.5, tag=tag),
+ Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag),
+ Param(name='CRDeltaGamma', value=0., seed=[-0.1, 0.1 ], ranges=[-1., 1. ], std=0.1, tag=tag),
+ Param(name='NeutrinoAntineutrinoRatio', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
+ Param(name='anisotropyScale', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
+ Param(name='domEfficiency', value=0.99, seed=[0.8, 1.2 ], ranges=[0.8, 1.2 ], std=0.1, tag=tag),
+ Param(name='holeiceForward', value=0., seed=[-0.8, 0.8 ], ranges=[-4.42, 1.58 ], std=0.1, tag=tag),
+ Param(name='piKRatio', value=1.0, seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag)
])
return ParamSet(nuisance)
@@ -54,7 +62,6 @@ def nuisance_argparse(parser):
def process_args(args):
"""Process the input args."""
- args.plot_angles = args.plot_chains
if args.likelihood is not Likelihood.GOLEMFIT \
and args.likelihood is not Likelihood.GF_FREQ:
raise AssertionError(
@@ -76,18 +83,6 @@ def parse_args(args=None):
help='Set the central value for the injected flavour ratio at IceCube'
)
parser.add_argument(
- '--run-scan', type=misc_utils.parse_bool, default='True',
- help='Do the scan from scratch'
- )
- parser.add_argument(
- '--plot-chains', type=misc_utils.parse_bool, default='False',
- help='Plot the (joint) posteriors'
- )
- parser.add_argument(
- '--plot-triangle', type=misc_utils.parse_bool, default='False',
- help='Project the posterior contour on the flavour triangle'
- )
- parser.add_argument(
'--seed', type=misc_utils.seed_parse, default='25',
help='Set the random seed value'
)
@@ -103,10 +98,9 @@ def parse_args(args=None):
gf_utils.gf_argparse(parser)
except: pass
llh_utils.likelihood_argparse(parser)
- mn_utils.mn_argparse(parser)
+ mcmc_utils.mcmc_argparse(parser)
nuisance_argparse(parser)
misc_utils.remove_option(parser, 'sigma_ratio')
- misc_utils.remove_option(parser, 'mn_output')
if args is None: return parser.parse_args()
else: return parser.parse_args(args.split())
@@ -163,25 +157,6 @@ def ln_prob(theta, args, hypo_paramset, fitter):
)
-def lnProb(cube, ndim, n_params, hypo_paramset, args, fitter):
- if ndim != len(hypo_paramset):
- raise AssertionError(
- 'Length of MultiNest scan paramset is not the same as the input '
- 'params\ncube={0}\nmn_paramset]{1}'.format(cube, hypo_paramset)
- )
- pranges = hypo_paramset.ranges
- for i in xrange(ndim):
- hypo_paramset[i].value = (pranges[i][1]-pranges[i][0])*cube[i] + pranges[i][0]
- theta = hypo_paramset.values
- llh = ln_prob(
- theta = theta,
- args = args,
- hypo_paramset = hypo_paramset,
- fitter = fitter
- )
- return llh
-
-
def main():
args = parse_args()
process_args(args)
@@ -196,99 +171,53 @@ def main():
print '== {0:<25} = {1}'.format('outfile', outfile)
n_params = len(hypo_paramset)
- prefix = outfile + '_mn_'
- misc_utils.make_dir(prefix)
+ outfile = outfile + '_emcee_'
print 'asimov_paramset', asimov_paramset
print 'hypo_paramset', hypo_paramset
- if args.run_scan:
+ if args.run_mcmc:
fitter = gf_utils.setup_fitter(args, asimov_paramset)
- lnProbEval = partial(
- lnProb,
+ ln_prob_eval = partial(
+ ln_prob,
hypo_paramset = hypo_paramset,
args = args,
fitter = fitter
)
- cwd = os.getcwd()
- os.chdir(prefix[:-len(os.path.basename(prefix))])
-
- print 'Running evidence calculation for {0}'.format(prefix)
- run(
- LogLikelihood = lnProbEval,
- Prior = mn_utils.CubePrior,
- n_dims = n_params,
- n_live_points = args.mn_live_points,
- evidence_tolerance = args.mn_tolerance,
- outputfiles_basename = prefix[-len(os.path.basename(prefix)):],
- importance_nested_sampling = True,
- resume = False,
- verbose = True
- )
-
- os.chdir(cwd)
-
- # Analyze
- analyser = Analyzer(
- outputfiles_basename=prefix, n_params=n_params
- )
- print analyser
-
- pranges = hypo_paramset.ranges
-
- bf = analyser.get_best_fit()['parameters']
- for i in xrange(len(bf)):
- bf[i] = (pranges[i][1]-pranges[i][0])*bf[i] + pranges[i][0]
- print 'bestfit = ', bf
- print 'bestfit log_likelihood', analyser.get_best_fit()['log_likelihood']
-
- print
- print '{0:50} = {1}'.format('global evidence', analyser.get_stats()['global evidence'])
- print
-
- fig_text = gen_figtext(args, asimov_paramset)
- fig_text += '\nBestfit LLH = {0}'.format(analyser.get_best_fit()['log_likelihood'])
- fig_text += '\nBestfits = '
- for x in bf: fig_text += '{0:.2f} '.format(x)
-
- if args.plot_chains or args.plot_triangle:
- chains = analyser.get_data()[:,2:]
- for x in chains:
- for i in xrange(len(x)):
- x[i] = (pranges[i][1]-pranges[i][0])*x[i] + pranges[i][0]
-
- if args.plot_chains:
- of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior'
- plot_utils.chainer_plot(
- infile = chains,
- outfile = of,
- outformat = ['png'],
- args = args,
- llh_paramset = hypo_paramset,
- fig_text = fig_text
- )
- print 'Saved plot', of
-
- if args.plot_triangle:
- llh = -0.5 * analyser.get_data()[:,1]
-
- flavour_angles = chains[:,-2:]
- flavour_ratios = np.array(
- map(fr_utils.angles_to_fr, flavour_angles)
- )
+ if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
+ p0 = mcmc_utils.flat_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
+ elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
+ p0 = mcmc_utils.gaussian_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
- of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_triangle'
- plot_utils.triangle_project(
- frs = flavour_ratios,
- llh = llh,
- outfile = of,
- outformat = ['png'],
- args = args,
- llh_paramset = hypo_paramset,
- fig_text = fig_text
+ samples = mcmc_utils.mcmc(
+ p0 = p0,
+ ln_prob = ln_prob_eval,
+ ndim = n_params,
+ nwalkers = args.nwalkers,
+ burnin = args.burnin,
+ nsteps = args.nsteps,
+ args = args,
+ threads = 1
+ # TODO(shivesh): broken because you cannot pickle a GolemFitPy object
+ # threads = misc_utils.thread_factors(args.threads)[0]
)
+ mcmc_utils.save_chains(samples, outfile)
+
+ of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior'
+ plot_utils.chainer_plot(
+ infile = outfile+'.npy',
+ outfile = of,
+ outformat = ['png'],
+ args = args,
+ llh_paramset = hypo_paramset,
+ fig_text = gen_figtext(args, hypo_paramset)
+ )
print "DONE!"
diff --git a/contour_emcee.py b/contour_emcee.py
deleted file mode 100755
index 5dc3c98..0000000
--- a/contour_emcee.py
+++ /dev/null
@@ -1,229 +0,0 @@
-#! /usr/bin/env python
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : November 26, 2018
-
-"""
-HESE flavour ratio contour
-"""
-
-from __future__ import absolute_import, division
-
-import os
-import argparse
-from functools import partial
-
-import numpy as np
-
-from utils import fr as fr_utils
-from utils import gf as gf_utils
-from utils import llh as llh_utils
-from utils import misc as misc_utils
-from utils import mcmc as mcmc_utils
-from utils import plot as plot_utils
-from utils.enums import str_enum
-from utils.enums import DataType, Likelihood, MCMCSeedType, ParamTag, PriorsCateg
-from utils.param import Param, ParamSet, get_paramsets
-
-from pymultinest import Analyzer, run
-
-
-def define_nuisance():
- """Define the nuisance parameters."""
- nuisance = []
- tag = ParamTag.NUISANCE
- lg_prior = PriorsCateg.LIMITEDGAUSS
- nuisance.extend([
- # Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
- # Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, prior=lg_prior, tag=tag),
- Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, tag=tag),
- Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, tag=tag),
- Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0., 10.], std=0.1, tag=tag),
- Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0., 20.], std=1.5, tag=tag),
- Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag),
- Param(name='CRDeltaGamma', value=0., seed=[-0.1, 0.1 ], ranges=[-1., 1. ], std=0.1, tag=tag),
- Param(name='NeutrinoAntineutrinoRatio', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
- Param(name='anisotropyScale', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
- Param(name='domEfficiency', value=0.99, seed=[0.8, 1.2 ], ranges=[0.8, 1.2 ], std=0.1, tag=tag),
- Param(name='holeiceForward', value=0., seed=[-0.8, 0.8 ], ranges=[-4.42, 1.58 ], std=0.1, tag=tag),
- Param(name='piKRatio', value=1.0, seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag)
- ])
- return ParamSet(nuisance)
-
-
-def nuisance_argparse(parser):
- nuisance = define_nuisance()
- for parm in nuisance:
- parser.add_argument(
- '--'+parm.name, type=float, default=parm.value,
- help=parm.name+' to inject'
- )
-
-def process_args(args):
- """Process the input args."""
- if args.likelihood is not Likelihood.GOLEMFIT \
- and args.likelihood is not Likelihood.GF_FREQ:
- raise AssertionError(
- 'Likelihood method {0} not supported for this '
- 'script!\nChoose either GOLEMFIT or GF_FREQ'.format(
- str_enum(args.likelihood)
- )
- )
-
-
-def parse_args(args=None):
- """Parse command line arguments"""
- parser = argparse.ArgumentParser(
- description="BSM flavour ratio analysis",
- formatter_class=misc_utils.SortingHelpFormatter,
- )
- parser.add_argument(
- '--injected-ratio', type=float, nargs=3, default=[1, 1, 1],
- help='Set the central value for the injected flavour ratio at IceCube'
- )
- parser.add_argument(
- '--seed', type=misc_utils.seed_parse, default='25',
- help='Set the random seed value'
- )
- parser.add_argument(
- '--threads', type=misc_utils.thread_type, default='1',
- help='Set the number of threads to use (int or "max")'
- )
- parser.add_argument(
- '--outfile', type=str, default='./untitled',
- help='Path to output results'
- )
- try:
- gf_utils.gf_argparse(parser)
- except: pass
- llh_utils.likelihood_argparse(parser)
- mcmc_utils.mcmc_argparse(parser)
- nuisance_argparse(parser)
- misc_utils.remove_option(parser, 'sigma_ratio')
- if args is None: return parser.parse_args()
- else: return parser.parse_args(args.split())
-
-
-def gen_identifier(args):
- f = '_{0}_{1}'.format(*map(str_enum, (args.likelihood, args.data)))
- if args.data is not DataType.REAL:
- ir1, ir2, ir3 = misc_utils.solve_ratio(args.injected_ratio)
- f += '_INJ_{0:03d}_{1:03d}_{2:03d}'.format(ir1, ir2, ir3)
- return f
-
-
-def gen_figtext(args, asimov_paramset):
- f = ''
- if args.data is DataType.REAL:
- f += 'IceCube Preliminary'
- else:
- ir1, ir2, ir3 = misc_utils.solve_ratio(args.injected_ratio)
- f += 'Injected ratio = [{0}, {1}, {2}]'.format(ir1, ir2, ir3)
- for param in asimov_paramset:
- f += '\nInjected {0:20s} = {1:.3f}'.format(
- param.name, param.nominal_value
- )
- return f
-
-
-def triangle_llh(theta, args, hypo_paramset, fitter):
- """Log likelihood function for a given theta."""
- if len(theta) != len(hypo_paramset):
- raise AssertionError(
- 'Dimensions of scan is not the same as the input '
- 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset)
- )
- for idx, param in enumerate(hypo_paramset):
- param.value = theta[idx]
-
- if args.likelihood is Likelihood.GOLEMFIT:
- llh = gf_utils.get_llh(fitter, hypo_paramset)
- elif args.likelihood is Likelihood.GF_FREQ:
- llh = gf_utils.get_llh_freq(fitter, hypo_paramset)
-
- return llh
-
-
-def ln_prob(theta, args, hypo_paramset, fitter):
- lp = llh_utils.lnprior(theta, paramset=hypo_paramset)
- if not np.isfinite(lp):
- return -np.inf
- return lp + triangle_llh(
- theta,
- args = args,
- hypo_paramset = hypo_paramset,
- fitter = fitter
- )
-
-
-def main():
- args = parse_args()
- process_args(args)
- misc_utils.print_args(args)
-
- if args.seed is not None:
- np.random.seed(args.seed)
-
- asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance())
- hypo_paramset.extend(asimov_paramset.from_tag(ParamTag.BESTFIT))
- outfile = args.outfile + gen_identifier(args)
- print '== {0:<25} = {1}'.format('outfile', outfile)
-
- n_params = len(hypo_paramset)
- outfile = outfile + '_emcee_'
-
- print 'asimov_paramset', asimov_paramset
- print 'hypo_paramset', hypo_paramset
-
- if args.run_mcmc:
- fitter = gf_utils.setup_fitter(args, asimov_paramset)
-
- ln_prob_eval = partial(
- ln_prob,
- hypo_paramset = hypo_paramset,
- args = args,
- fitter = fitter
- )
-
- if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
- p0 = mcmc_utils.flat_seed(
- hypo_paramset, nwalkers=args.nwalkers
- )
- elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
- p0 = mcmc_utils.gaussian_seed(
- hypo_paramset, nwalkers=args.nwalkers
- )
-
- samples = mcmc_utils.mcmc(
- p0 = p0,
- ln_prob = ln_prob_eval,
- ndim = n_params,
- nwalkers = args.nwalkers,
- burnin = args.burnin,
- nsteps = args.nsteps,
- args = args,
- threads = 1
- # TODO(shivesh): broken because you cannot pickle a GolemFitPy object
- # threads = misc_utils.thread_factors(args.threads)[0]
- )
- mcmc_utils.save_chains(samples, outfile)
-
- of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior'
- plot_utils.chainer_plot(
- infile = outfile+'.npy',
- outfile = of,
- outformat = ['png'],
- args = args,
- llh_paramset = hypo_paramset,
- fig_text = gen_figtext(args, hypo_paramset)
- )
-
- print "DONE!"
-
-
-main.__doc__ = __doc__
-
-
-if __name__ == '__main__':
- main()
diff --git a/plot_sens.py b/plot_sens.py
index b68cb5d..0eef55e 100755
--- a/plot_sens.py
+++ b/plot_sens.py
@@ -20,10 +20,10 @@ import numpy.ma as ma
from utils import fr as fr_utils
from utils import llh as llh_utils
-from utils import misc as misc_utils
from utils import plot as plot_utils
-from utils.enums import EnergyDependance, Likelihood, MixingScenario, ParamTag
-from utils.enums import PriorsCateg, SensitivityCateg, StatCateg
+from utils.enums import DataType, Texture
+from utils.misc import enum_parse, parse_bool, parse_enum, print_args
+from utils.misc import gen_identifier, SortingHelpFormatter
from utils.param import Param, ParamSet
@@ -32,14 +32,22 @@ def process_args(args):
if args.data is not DataType.REAL:
args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio)
- if len(args.source_ratios) % 3 != 0:
- raise ValueError(
- 'Invalid source ratios input {0}'.format(args.source_ratios)
- )
+ if args.source_ratios is not None:
+ if args.x_segments is not None:
+ raise ValueError('Cannot do both --source-ratios and --x-segments')
+ if len(args.source_ratios) % 3 != 0:
+ raise ValueError(
+ 'Invalid source ratios input {0}'.format(args.source_ratios)
+ )
- srs = [args.source_ratios[3*x:3*x+3]
- for x in range(int(len(args.source_ratios)/3))]
- args.source_ratios = map(fr_utils.normalise_fr, srs)
+ srs = [args.source_ratios[3*x:3*x+3]
+ for x in range(int(len(args.source_ratios)/3))]
+ args.source_ratios = map(fr_utils.normalise_fr, srs)
+ elif args.x_segments is not None:
+ x_array = np.linspace(0, 1, args.x_segments)
+ args.source_ratios = [[x, 1-x, 0] for x in x_array]
+ else:
+ raise ValueError('Must supply either --source-ratios or --x-segments')
args.dimensions = np.sort(args.dimensions)
@@ -48,7 +56,7 @@ def parse_args(args=None):
"""Parse command line arguments"""
parser = argparse.ArgumentParser(
description="HESE BSM flavour ratio analysis plotting script",
- formatter_class=misc_utils.SortingHelpFormatter,
+ formatter_class=SortingHelpFormatter,
)
parser.add_argument(
'--datadir', type=str,
@@ -60,7 +68,7 @@ def parse_args(args=None):
help='Number of new physics scales to evaluate'
)
parser.add_argument(
- '--split-jobs', type=misc_utils.parse_bool, default='True',
+ '--split-jobs', type=parse_bool, default='True',
help='Did the jobs get split'
)
parser.add_argument(
@@ -68,8 +76,12 @@ def parse_args(args=None):
help='Set the new physics dimensions to consider'
)
parser.add_argument(
- '--source-ratios', type=int, nargs='*', default=[1, 2, 0],
- help='Set the source flavour ratios'
+ '--source-ratios', type=int, nargs='*', default=None,
+ required=False, help='Set the source flavour ratios'
+ )
+ parser.add_argument(
+ '--x-segments', type=int, default=None,
+ required=False, help='Number of segments in x'
)
parser.add_argument(
'--texture', type=partial(enum_parse, c=Texture),
@@ -80,18 +92,18 @@ def parse_args(args=None):
choices=DataType, help='select datatype'
)
parser.add_argument(
- '--plot-x', type=misc_utils.parse_bool, default='True',
+ '--plot-x', type=parse_bool, default='False',
help='Make sensitivity plot x vs limit'
)
parser.add_argument(
- '--plot-table', type=misc_utils.parse_bool, default='True',
+ '--plot-table', type=parse_bool, default='False',
help='Make sensitivity table plot'
)
parser.add_argument(
- '--plot-statistic', type=misc_utils.parse_bool, default='False',
+ '--plot-statistic', type=parse_bool, default='False',
help='Plot MultiNest evidence or LLH value'
)
- llh_utils.likelihood_argparse(parser)
+ llh_utils.llh_argparse(parser)
if args is None: return parser.parse_args()
else: return parser.parse_args(args.split())
@@ -99,7 +111,7 @@ def parse_args(args=None):
def main():
args = parse_args()
process_args(args)
- misc_utils.print_args(args)
+ print_args(args)
dims = len(args.dimensions)
srcs = len(args.source_ratios)
@@ -116,10 +128,11 @@ def main():
statistic_arr = np.full((dims, srcs, texs, args.segments, 2), np.nan)
print 'Loading data'
+ argsc = deepcopy(args)
for idim, dim in enumerate(args.dimensions):
- argsc = deepcopy(args)
argsc.dimension = dim
+ datadir = args.datadir + '/DIM{0}'.format(dim)
# Array of scales to scan over.
boundaries = fr_utils.SCALE_BOUNDARIES[argsc.dimension]
eval_scales = np.linspace(
@@ -130,12 +143,11 @@ def main():
for isrc, src in enumerate(args.source_ratios):
argsc.source_ratio = src
for itex, texture in enumerate(textures):
- argc.texture = texture
+ argsc.texture = texture
- base_infile = args.datadir + '/{0}/{1}/{2}/fr_stat'.format(
- *map(misc_utils.parse_enum, [args.stat_method, args.data]),
- prefix
- ) + misc_utils.gen_identifier(argsc)
+ base_infile = datadir + '/{0}/{1}/'.format(
+ *map(parse_enum, [args.stat_method, args.data])
+ ) + r'{0}/fr_stat'.format(prefix) + gen_identifier(argsc)
print '== {0:<25} = {1}'.format('base_infile', base_infile)
@@ -147,12 +159,13 @@ def main():
try:
print 'Loading from {0}'.format(infile+'.npy')
statistic_arr[idim][isrc][itex][idx_sc] = \
- np.load(infile+'.npy')[:,0]
+ np.load(infile+'.npy')[0]
except:
print 'Unable to load file {0}'.format(
infile+'.npy'
)
- continue
+ raise
+ # continue
else:
print 'Loading from {0}'.format(base_infile+'.npy')
try:
@@ -165,7 +178,6 @@ def main():
continue
data = ma.masked_invalid(statistic_arr)
- argsc = deepcopy(args)
print 'data', data
if args.plot_statistic:
@@ -184,12 +196,11 @@ def main():
for isrc, src in enumerate(args.source_ratios):
argsc.source_ratio = src
for itex, texture in enumerate(textures):
- argc.texture = texture
+ argsc.texture = texture
- base_infile = args.datadir + '/{0}/{1}/{2}/fr_stat'.format(
- *map(misc_utils.parse_enum, [args.stat_method, args.data]),
- prefix
- ) + misc_utils.gen_identifier(argsc)
+ base_infile = args.datadir + '/DIM{0}/{1}/{2}/'.format(
+ dim, *map(parse_enum, [args.stat_method, args.data])
+ ) + r'{0}/fr_stat'.format(prefix) + gen_identifier(argsc)
basename = os.path.dirname(base_infile)
outfile = basename[:5]+basename[5:].replace('data', 'plots')
outfile += '/' + os.path.basename(base_infile)
@@ -205,10 +216,11 @@ def main():
)
basename = args.datadir[:5]+args.datadir[5:].replace('data', 'plots')
- baseoutfile = basename + '/{0}/{1}/{2}/'.format(
- *map(misc_utils.parse_enum, [args.stat_method, args.data]), prefix
- )
+ baseoutfile = basename + '/{0}/{1}/'.format(
+ *map(parse_enum, [args.stat_method, args.data])
+ ) + r'{0}/'.format(prefix)
+ argsc = deepcopy(args)
if args.plot_x:
for idim, dim in enumerate(args.dimensions):
argsc.dimension = dim
diff --git a/plot_sens_sourcescan.py b/plot_sens_sourcescan.py
deleted file mode 100755
index 130817d..0000000
--- a/plot_sens_sourcescan.py
+++ /dev/null
@@ -1,411 +0,0 @@
-#! /usr/bin/env python
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : April 28, 2018
-
-"""
-HESE BSM flavour ratio analysis plotting script
-"""
-
-from __future__ import absolute_import, division
-
-import os
-import argparse
-from functools import partial
-from copy import deepcopy
-
-import numpy as np
-import numpy.ma as ma
-
-from utils import fr as fr_utils
-from utils import gf as gf_utils
-from utils import llh as llh_utils
-from utils import misc as misc_utils
-from utils import plot as plot_utils
-from utils.enums import EnergyDependance, Likelihood, MixingScenario, ParamTag
-from utils.enums import PriorsCateg, SensitivityCateg, StatCateg
-from utils.param import Param, ParamSet, get_paramsets
-
-from utils import mn as mn_utils
-
-
-def define_nuisance():
- """Define the nuisance parameters."""
- tag = ParamTag.SM_ANGLES
- g_prior = PriorsCateg.GAUSSIAN
- lg_prior = PriorsCateg.LIMITEDGAUSS
- e = 1e-9
- nuisance = [
- Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
- Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
- Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
- Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
- Param(
- name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
- std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
- ),
- Param(
- name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
- std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
- )
- ]
- tag = ParamTag.NUISANCE
- nuisance.extend([
- Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
- Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
- Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
- Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag),
- Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
- ])
- return ParamSet(nuisance)
-
-
-def nuisance_argparse(parser):
- nuisance = define_nuisance()
- for parm in nuisance:
- parser.add_argument(
- '--'+parm.name, type=float, default=parm.value,
- help=parm.name+' to inject'
- )
-
-
-def process_args(args):
- """Process the input args."""
- if args.fix_mixing is not MixingScenario.NONE and args.fix_scale:
- raise NotImplementedError('Fixed mixing and scale not implemented')
- if args.fix_mixing is not MixingScenario.NONE and args.fix_mixing_almost:
- raise NotImplementedError(
- '--fix-mixing and --fix-mixing-almost cannot be used together'
- )
- if args.fix_scale:
- raise NotImplementedError(
- '--fix-scale not implemented'
- )
-
- args.measured_ratio = fr_utils.normalise_fr(args.measured_ratio)
- # if args.fix_source_ratio:
- # assert len(args.source_ratios) % 3 == 0
- # srs = [args.source_ratios[3*x:3*x+3]
- # for x in range(int(len(args.source_ratios)/3))]
- # args.source_ratios = map(fr_utils.normalise_fr, srs)
-
- if args.energy_dependance is EnergyDependance.SPECTRAL:
- args.binning = np.logspace(
- np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
- )
-
- if args.split_jobs and args.run_method is SensitivityCateg.FULL:
- raise NotImplementedError(
- 'split_jobs and run_method not implemented'
- )
-
- args.dimensions = np.sort(args.dimensions)
-
- args_copy = deepcopy(args)
- scale_regions = []
- for dim in args.dimensions:
- args_copy.dimension = dim
- _, scale_region = fr_utils.estimate_scale(args_copy)
- scale_regions.append(scale_region)
- args.scale_region = [np.min(scale_regions), np.max(scale_regions)]
- args.scale = np.power(10., np.average(np.log10(args.scale_region)))
-
-
-def parse_args(args=None):
- """Parse command line arguments"""
- parser = argparse.ArgumentParser(
- description="HESE BSM flavour ratio analysis plotting script",
- formatter_class=misc_utils.SortingHelpFormatter,
- )
- parser.add_argument(
- '--infile', type=str, default='./untitled',
- help='Path to input dir'
- )
- parser.add_argument(
- '--run-method', default='full',
- type=partial(misc_utils.enum_parse, c=SensitivityCateg),
- choices=SensitivityCateg,
- help='Choose which type of sensivity plot to make'
- )
- parser.add_argument(
- '--stat-method', default='bayesian',
- type=partial(misc_utils.enum_parse, c=StatCateg), choices=StatCateg,
- help='Statistical method to employ'
- )
- parser.add_argument(
- '--sens-bins', type=int, default=10,
- help='Number of bins for the Bayes factor plot'
- )
- parser.add_argument(
- '--split-jobs', type=misc_utils.parse_bool, default='False',
- help='Did the jobs get split'
- )
- parser.add_argument(
- '--plot', type=misc_utils.parse_bool, default='True',
- help='Make sensitivity plots'
- )
- parser.add_argument(
- '--plot-statistic', type=misc_utils.parse_bool, default='False',
- help='Plot MultiNest evidence or LLH value'
- )
- fr_utils.fr_argparse(parser)
- gf_utils.gf_argparse(parser)
- llh_utils.likelihood_argparse(parser)
- mn_utils.mn_argparse(parser)
- nuisance_argparse(parser)
- misc_utils.remove_option(parser, 'dimension')
- misc_utils.remove_option(parser, 'source_ratio')
- misc_utils.remove_option(parser, 'scale')
- misc_utils.remove_option(parser, 'scale_region')
- parser.add_argument(
- '--dimensions', type=int, nargs='*', default=[3, 6],
- help='Set the new physics dimensions to consider'
- )
- parser.add_argument(
- '--source-bins', type=int, default=5,
- help='Binning in source flavour space'
- )
- if args is None: return parser.parse_args()
- else: return parser.parse_args(args.split())
-
-
-def main():
- args = parse_args()
- process_args(args)
- args.scale = 0
- misc_utils.print_args(args)
-
- asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
-
- scale = llh_paramset.from_tag(ParamTag.SCALE)[0]
- mmangles = llh_paramset.from_tag(ParamTag.MMANGLES)
- if args.run_method is SensitivityCateg.FULL:
- st_paramset_arr = [llh_paramset.from_tag(ParamTag.SCALE, invert=True)]
- elif args.run_method in [SensitivityCateg.FIXED_ANGLE, SensitivityCateg.CORR_ANGLE]:
- nscale_pmset = llh_paramset.from_tag([ParamTag.SCALE, ParamTag.MMANGLES], invert=True)
- st_paramset_arr = [nscale_pmset] * 3
- elif args.run_method in [SensitivityCateg.FIXED_ONE_ANGLE, SensitivityCateg.CORR_ONE_ANGLE]:
- nscale_pmset = llh_paramset.from_tag(ParamTag.SCALE, invert=True)
- st_paramset_arr = []
- for x in xrange(3):
- st_paramset_arr.append(
- ParamSet([prms for prms in nscale_pmset
- if mmangles[x].name != prms.name])
- )
-
- corr_angles_categ = [SensitivityCateg.CORR_ANGLE, SensitivityCateg.CORR_ONE_ANGLE]
- fixed_angle_categ = [SensitivityCateg.FIXED_ANGLE, SensitivityCateg.FIXED_ONE_ANGLE]
-
- if args.run_method in corr_angles_categ:
- scan_angles = np.linspace(0+1e-9, 1-1e-9, args.sens_bins)
- else: scan_angles = np.array([0])
- print 'scan_angles', scan_angles
-
- dims = len(args.dimensions)
- binning = np.linspace(0, 1, args.source_bins)
- grid = np.dstack(np.meshgrid(binning, binning)).reshape(
- args.source_bins*args.source_bins, 2
- )
- source_ratios = []
- for x in grid:
- if x[0]+x[1] > 1:
- continue
- source_ratios.append([x[0], x[1], 1-x[0]-x[1]])
- args.source_ratios = source_ratios
- n_source_ratios = map(fr_utils.normalise_fr, source_ratios)
-
- srcs = len(n_source_ratios)
- if args.run_method is SensitivityCateg.FULL:
- statistic_arr = np.full((dims, srcs, args.sens_bins, 2), np.nan)
- elif args.run_method in fixed_angle_categ:
- statistic_arr = np.full((dims, srcs, len(st_paramset_arr), args.sens_bins, 2), np.nan)
- elif args.run_method in corr_angles_categ:
- statistic_arr = np.full(
- (dims, srcs, len(st_paramset_arr), args.sens_bins, args.sens_bins, 3), np.nan
- )
-
- print 'Loading data'
- for idim, dim in enumerate(args.dimensions):
- argsc = deepcopy(args)
- argsc.dimension = dim
- _, scale_region = fr_utils.estimate_scale(argsc)
- argsc.scale_region = scale_region
- scan_scales = np.linspace(
- np.log10(scale_region[0]), np.log10(scale_region[1]), args.sens_bins
- )
- scan_scales = np.concatenate([[-100.], scan_scales])
-
- for isrc, src in enumerate(n_source_ratios):
- argsc.source_ratio = src
- infile = args.infile
- if args.likelihood is Likelihood.GOLEMFIT:
- infile += '/golemfit/'
- elif args.likelihood is Likelihood.GAUSSIAN:
- infile += '/gaussian/'
- if args.likelihood is Likelihood.GAUSSIAN:
- infile += '{0}/'.format(str(args.sigma_ratio).replace('.', '_'))
- # infile += '/DIM{0}/fix_ifr/{1}/{2}/{3}/fr_stat'.format(
- infile += '/DIM{0}/fix_ifr/sourcescan/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/prior/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/{1}/{2}/{3}/old/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/seed2/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/100TeV/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/strictprior/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/noprior/{1}/{2}/{3}/fr_stat'.format(
- dim, *map(misc_utils.parse_enum, [args.stat_method, args.run_method, args.data])
- ) + misc_utils.gen_identifier(argsc)
- print '== {0:<25} = {1}'.format('infile', infile)
-
- if args.split_jobs:
- for idx_an, an in enumerate(scan_angles):
- for idx_sc, sc in enumerate(scan_scales):
- filename = infile + '_scale_{0:.0E}'.format(np.power(10, sc))
- try:
- if args.run_method in fixed_angle_categ:
- print 'Loading from {0}'.format(filename+'.npy')
- statistic_arr[idim][isrc][:,idx_sc] = np.load(filename+'.npy')[:,0]
- if args.run_method in corr_angles_categ:
- filename += '_angle_{0:<04.2}'.format(an)
- print 'Loading from {0}'.format(filename+'.npy')
- statistic_arr[idim][isrc][:,idx_an,idx_sc] = np.load(filename+'.npy')[:,0,0]
- except:
- print 'Unable to load file {0}'.format(filename+'.npy')
- continue
- else:
- print 'Loading from {0}'.format(infile+'.npy')
- try:
- statistic_arr[idim][isrc] = np.load(infile+'.npy')
- except:
- print 'Unable to load file {0}'.format(infile+'.npy')
- continue
-
- data = ma.masked_invalid(statistic_arr)
-
- print 'data', data
- print 'data.shape', data.shape
- if args.plot_statistic:
- assert 0
- print 'Plotting statistic'
-
- argsc = deepcopy(args)
- for idim, dim in enumerate(args.dimensions):
- argsc.dimension = dim
- _, scale_region = fr_utils.estimate_scale(argsc)
- argsc.scale_region = scale_region
- base_infile = args.infile
- if args.likelihood is Likelihood.GOLEMFIT:
- base_infile += '/golemfit/'
- elif args.likelihood is Likelihood.GAUSSIAN:
- base_infile += '/gaussian/'
- if args.likelihood is Likelihood.GAUSSIAN:
- base_infile += '{0}/'.format(str(args.sigma_ratio).replace('.', '_'))
- # base_infile += '/DIM{0}/fix_ifr'.format(dim)
- base_infile += '/DIM{0}/fix_ifr/sourcescan'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/prior'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/seed2'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/100TeV'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/strictprior'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/noprior'.format(dim)
-
- for isrc, src in enumerate(n_source_ratios):
- argsc.source_ratio = src
- infile = base_infile +'/{0}/{1}/{2}/fr_stat'.format(
- # infile = base_infile +'/{0}/{1}/{2}/old/fr_stat'.format(
- *map(misc_utils.parse_enum, [args.stat_method, args.run_method, args.data])
- ) + misc_utils.gen_identifier(argsc)
- basename = os.path.dirname(infile)
- baseoutfile = basename[:5]+basename[5:].replace('data', 'plots')
- baseoutfile += '/' + os.path.basename(infile)
- if args.run_method is SensitivityCateg.FULL:
- outfile = baseoutfile
- plot_utils.plot_statistic(
- data = data[idim][isrc],
- outfile = outfile,
- outformat = ['png'],
- args = argsc,
- scale_param = scale,
- )
- if args.run_method in fixed_angle_categ:
- for idx_scen in xrange(len(st_paramset_arr)):
- print '|||| SCENARIO = {0}'.format(idx_scen)
- outfile = baseoutfile + '_SCEN{0}'.format(idx_scen)
- if idx_scen == 0: label = r'$\mathcal{O}_{12}=\pi/4$'
- elif idx_scen == 1: label = r'$\mathcal{O}_{13}=\pi/4$'
- elif idx_scen == 2: label = r'$\mathcal{O}_{23}=\pi/4$'
- plot_utils.plot_statistic(
- data = data[idim][isrc][idx_scen],
- outfile = outfile,
- outformat = ['png'],
- args = argsc,
- scale_param = scale,
- label = label
- )
- elif args.run_method in corr_angles_categ:
- for idx_scen in xrange(len(st_paramset_arr)):
- print '|||| SCENARIO = {0}'.format(idx_scen)
- basescenoutfile = baseoutfile + '_SCEN{0}'.format(idx_scen)
- if idx_scen == 0: label = r'$\mathcal{O}_{12}='
- elif idx_scen == 1: label = r'$\mathcal{O}_{13}='
- elif idx_scen == 2: label = r'$\mathcal{O}_{23}='
- for idx_an, an in enumerate(scan_angles):
- print '|||| ANGLE = {0:<04.2}'.format(float(an))
- outfile = basescenoutfile + '_ANGLE{0}'.format(idx_an)
- _label = label + r'{0:<04.2}$'.format(an)
- plot_utils.plot_statistic(
- data = data[idim][isrc][idx_scen][idx_an][:,1:],
- outfile = outfile,
- outformat = ['png'],
- args = argsc,
- scale_param = scale,
- label = _label
- )
-
- if args.plot:
- print 'Plotting sensitivities'
-
- basename = args.infile[:5]+args.infile[5:].replace('data', 'plots')
- baseoutfile = basename + '/{0}/{1}/{2}/'.format(
- *map(misc_utils.parse_enum, [args.likelihood, args.stat_method, args.data])
- )
-
- if args.run_method is SensitivityCateg.FULL:
- plot_utils.plot_sens_full(
- data = data,
- outfile = baseoutfile + '/FULL',
- outformat = ['png', 'pdf'],
- args = args,
- )
- elif args.run_method in fixed_angle_categ:
- # plot_utils.plot_sens_fixed_angle_pretty(
- # data = data,
- # outfile = baseoutfile + '/fixed_angle_pretty_substantial',
- # outformat = ['png', 'pdf'],
- # args = args,
- # )
- # plot_utils.plot_sens_fixed_angle(
- # data = data,
- # outfile = baseoutfile + '/FIXED_ANGLE',
- # outformat = ['png'],
- # args = args,
- # )
- plot_utils.plot_source_ternary_1D(
- data = data,
- outfile = baseoutfile + '/source_ternary',
- outformat = ['png'],
- args = args,
- )
- elif args.run_method in corr_angles_categ:
- plot_utils.plot_sens_corr_angle(
- data = data,
- outfile = baseoutfile + '/CORR_ANGLE',
- outformat = ['png', 'pdf'],
- args = args,
- )
-
-
-main.__doc__ = __doc__
-
-
-if __name__ == '__main__':
- main()
diff --git a/utils/misc.py b/utils/misc.py
index abef78a..e5fedb9 100644
--- a/utils/misc.py
+++ b/utils/misc.py
@@ -33,7 +33,8 @@ class SortingHelpFormatter(argparse.HelpFormatter):
def solve_ratio(fr):
denominator = reduce(gcd, fr)
f = [int(x/denominator) for x in fr]
- if f[0] > 1E3 or f[1] > 1E3 or f[2] > 1E3:
+ allow = (1, 2, 0)
+ if f[0] not in allow or f[1] not in allow or f[2] not in allow:
return '{0:.2f}_{1:.2f}_{2:.2f}'.format(fr[0], fr[1], fr[2])
else:
return '{0}_{1}_{2}'.format(f[0], f[1], f[2])
@@ -162,10 +163,10 @@ def centers(x):
def get_units(dimension):
if dimension == 3: return r' / \:{\rm GeV}'
if dimension == 4: return r''
- if dimension == 5: return r' / \:{rm GeV}^{-1}'
- if dimension == 6: return r' / \:{rm GeV}^{-2}'
- if dimension == 7: return r' / \:{rm GeV}^{-3}'
- if dimension == 8: return r' / \:{rm GeV}^{-4}'
+ if dimension == 5: return r' / \:{\rm GeV}^{-1}'
+ if dimension == 6: return r' / \:{\rm GeV}^{-2}'
+ if dimension == 7: return r' / \:{\rm GeV}^{-3}'
+ if dimension == 8: return r' / \:{\rm GeV}^{-4}'
def calc_nbins(x):
diff --git a/utils/plot.py b/utils/plot.py
index 006cbef..4f9d961 100644
--- a/utils/plot.py
+++ b/utils/plot.py
@@ -36,10 +36,10 @@ from ternary.heatmapping import polygon_generator
import shapely.geometry as geometry
-from utils import misc as misc_utils
-from utils.enums import DataType, EnergyDependance, str_enum
+from utils.enums import DataType, str_enum
from utils.enums import Likelihood, ParamTag, StatCateg, Texture
-from utils.fr import angles_to_u, angles_to_fr
+from utils.misc import get_units, make_dir, solve_ratio
+from utils.fr import angles_to_u, angles_to_fr, SCALE_BOUNDARIES
BAYES_K = 1. # Substantial degree of belief.
@@ -115,7 +115,7 @@ def chainer_plot(infile, outfile, outformat, args, llh_paramset, fig_text=None):
print 'raw.shape', raw.shape
print 'raw', raw
- misc_utils.make_dir(outfile)
+ make_dir(outfile), make_dir
if fig_text is None:
fig_text = gen_figtext(args)
@@ -277,7 +277,7 @@ def plot_statistic(data, outfile, outformat, args, scale_param, label=None):
)
at.patch.set_boxstyle("round,pad=0.1,rounding_size=0.5")
ax.add_artist(at)
- misc_utils.make_dir(outfile)
+ make_dir(outfile)
for of in outformat:
print 'Saving as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
@@ -322,12 +322,12 @@ def plot_sens_full(data, outfile, outformat, args):
al = scales[reduced_ev > 2.71] # 90% CL for 1 DOF via Wilks
if len(al) == 0:
print 'No points for DIM {0} FRS {1} NULL {2}!'.format(
- dim, misc_utils.solve_ratio(src), null
+ dim, solve_ratio(src), null
)
print 'Reduced EV {0}'.format(reduced_ev)
continue
lim = al[0]
- label = '[{0}, {1}, {2}]'.format(*misc_utils.solve_ratio(src))
+ label = '[{0}, {1}, {2}]'.format(*solve_ratio(src))
if lim < yranges[0]: yranges[0] = lim
if lim > yranges[1]: yranges[1] = lim+4
line = plt.Line2D(
@@ -352,7 +352,7 @@ def plot_sens_full(data, outfile, outformat, args):
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.4, linewidth=1)
- misc_utils.make_dir(outfile)
+ make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
@@ -496,7 +496,7 @@ def plot_table_sens(data, outfile, outformat, args):
if isrc not in legend_log:
legend_log.append(isrc)
- label = '{0} at source'.format(misc_utils.solve_ratio(src))
+ label = '{0} at source'.format(solve_ratio(src))
legend_elements.append(
Patch(facecolor=rgb_co[isrc]+[0.3],
edgecolor=rgb_co[isrc]+[1], label=label)
@@ -544,7 +544,7 @@ def plot_table_sens(data, outfile, outformat, args):
fig.text(0.278, ybound, r'\bf IceCube Simulation', color='red', fontsize=13,
ha='center', va='center', zorder=11)
- misc_utils.make_dir(outfile)
+ make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
@@ -616,7 +616,7 @@ def plot_sens_fixed_angle(data, outfile, outformat, args):
arr_len = 1.5
lim = al[0]
print 'limit = {0}'.format(lim)
- label = '{0} : {1} : {2}'.format(*misc_utils.solve_ratio(src))
+ label = '{0} : {1} : {2}'.format(*solve_ratio(src))
# if lim < yranges[0]: yranges[0] = lim-arr_len
# if lim > yranges[1]: yranges[1] = lim+arr_len+2
# if lim > yranges[1]: yranges[1] = lim
@@ -680,7 +680,7 @@ def plot_sens_fixed_angle(data, outfile, outformat, args):
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.2, linewidth=1)
out = outfile + '_DIM{0}'.format(dim)
- misc_utils.make_dir(out)
+ make_dir(out)
for of in outformat:
print 'Saving plot as {0}'.format(out+'.'+of)
fig.savefig(out+'.'+of, bbox_inches='tight', dpi=150)
@@ -824,7 +824,7 @@ def plot_sens_corr_angle(data, outfile, outformat, args):
at.patch.set_boxstyle("round,pad=0.1,rounding_size=0.5")
ax.add_artist(at)
out = outfile + '_DIM{0}_SRC{1}_AN{2}'.format(dim, isrc, ian)
- misc_utils.make_dir(out)
+ make_dir(out)
for of in outformat:
print 'Saving plot as {0}'.format(out+'.'+of)
fig.savefig(out+'.'+of, bbox_inches='tight', dpi=150)
@@ -934,7 +934,7 @@ def triangle_project(frs, llh, outfile, outformat, args, llh_paramset, fig_text)
cb.set_label(r'$LLH$', fontsize=fontsize+5, labelpad=20,
horizontalalignment='center')
- misc_utils.make_dir(outfile)
+ make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'.'+of)
fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
@@ -1088,7 +1088,7 @@ def plot_source_ternary(data, outfile, outformat, args):
print 'vertices', heatmap(interp_dict, nsrcs)
print
tax.heatmap(interp_dict, scale=nsrcs, vmin=-60, vmax=-30)
- misc_utils.make_dir(outfile)
+ make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'_SCEN{0}.'.format(isce)+of)
fig.savefig(outfile+'_SCEN{0}.'.format(isce)+of, bbox_inches='tight', dpi=150)
@@ -1102,7 +1102,7 @@ def plot_x(data, outfile, outformat, args):
print 'Making X sensitivity plot'
dims = args.dimensions
srcs = args.source_ratios
- x_arr = [i[0] for i in srcs]
+ x_arr = np.array([i[0] for i in srcs])
if args.texture is Texture.NONE:
textures = [Texture.OEU, Texture.OET, Texture.OUT]
else:
@@ -1122,15 +1122,18 @@ def plot_x(data, outfile, outformat, args):
for idim, dim in enumerate(dims):
print '|||| DIM = {0}, {1}'.format(idim, dim)
+ boundaries = SCALE_BOUNDARIES[dim]
+
fig = plt.figure(figsize=(4, 4))
ax = fig.add_subplot(111)
ax.tick_params(axis='x', labelsize=12)
ax.tick_params(axis='y', labelsize=12)
ax.set_xlabel(r'$x$', fontsize=18)
- ax.set_ylabel(r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} (\Lambda_{d='+str(dim)+r'}^{-1}\:/\:'+get_units(args.dimension)+r')\: ]$', fontsize=18)
+ ax.set_ylabel(r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} (\Lambda_{d='+str(dim)+r'}^{-1}\:'+get_units(args.dimension)+r')\: ]$', fontsize=12)
ax.set_xlim(0, 1)
- for itex, tex in enumerate(texture):
- print '|||| TEX = {0}'.format(texture)
+ ax.set_ylim(boundaries)
+ for itex, tex in enumerate(textures):
+ print '|||| TEX = {0}'.format(tex)
lims = np.full(len(srcs), np.nan)
for isrc, src in enumerate(srcs):
x = src[0]
@@ -1167,14 +1170,18 @@ def plot_x(data, outfile, outformat, args):
lims[isrc] = lim
lims = ma.masked_invalid(lims)
- print 'lims', lims
- ax.scatter(x_arr, lims)
+ size = np.sum(~lims.mask)
+ if size == 0: continue
+ tck, u = splprep([x_arr[~lims.mask], lims[~lims.mask]], s=0, k=1)
+ x, y = splev(np.linspace(0, 1, 100), tck)
+ ax.scatter(x_arr, lims, marker='o', s=10, alpha=1, zorder=5)
+ ax.fill_between(x, y, 0, label=texture_label(tex))
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.3, linewidth=1)
- for xmaj in be:
+ for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.3, linewidth=1)
ax.legend()
- misc_utils.make_dir(outfile)
+ make_dir(outfile)
for of in outformat:
print 'Saving plot as {0}'.format(outfile+'_DIM{0}.'.format(dim)+of)
fig.savefig(outfile+'_DIM{0}.'.format(dim)+of, bbox_inches='tight', dpi=150)