aboutsummaryrefslogtreecommitdiffstats
path: root/contour_emcee.py
diff options
context:
space:
mode:
Diffstat (limited to 'contour_emcee.py')
-rwxr-xr-xcontour_emcee.py229
1 files changed, 0 insertions, 229 deletions
diff --git a/contour_emcee.py b/contour_emcee.py
deleted file mode 100755
index 5dc3c98..0000000
--- a/contour_emcee.py
+++ /dev/null
@@ -1,229 +0,0 @@
-#! /usr/bin/env python
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : November 26, 2018
-
-"""
-HESE flavour ratio contour
-"""
-
-from __future__ import absolute_import, division
-
-import os
-import argparse
-from functools import partial
-
-import numpy as np
-
-from utils import fr as fr_utils
-from utils import gf as gf_utils
-from utils import llh as llh_utils
-from utils import misc as misc_utils
-from utils import mcmc as mcmc_utils
-from utils import plot as plot_utils
-from utils.enums import str_enum
-from utils.enums import DataType, Likelihood, MCMCSeedType, ParamTag, PriorsCateg
-from utils.param import Param, ParamSet, get_paramsets
-
-from pymultinest import Analyzer, run
-
-
-def define_nuisance():
- """Define the nuisance parameters."""
- nuisance = []
- tag = ParamTag.NUISANCE
- lg_prior = PriorsCateg.LIMITEDGAUSS
- nuisance.extend([
- # Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
- # Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, prior=lg_prior, tag=tag),
- Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, tag=tag),
- Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, tag=tag),
- Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0., 10.], std=0.1, tag=tag),
- Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0., 20.], std=1.5, tag=tag),
- Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag),
- Param(name='CRDeltaGamma', value=0., seed=[-0.1, 0.1 ], ranges=[-1., 1. ], std=0.1, tag=tag),
- Param(name='NeutrinoAntineutrinoRatio', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
- Param(name='anisotropyScale', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
- Param(name='domEfficiency', value=0.99, seed=[0.8, 1.2 ], ranges=[0.8, 1.2 ], std=0.1, tag=tag),
- Param(name='holeiceForward', value=0., seed=[-0.8, 0.8 ], ranges=[-4.42, 1.58 ], std=0.1, tag=tag),
- Param(name='piKRatio', value=1.0, seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag)
- ])
- return ParamSet(nuisance)
-
-
-def nuisance_argparse(parser):
- nuisance = define_nuisance()
- for parm in nuisance:
- parser.add_argument(
- '--'+parm.name, type=float, default=parm.value,
- help=parm.name+' to inject'
- )
-
-def process_args(args):
- """Process the input args."""
- if args.likelihood is not Likelihood.GOLEMFIT \
- and args.likelihood is not Likelihood.GF_FREQ:
- raise AssertionError(
- 'Likelihood method {0} not supported for this '
- 'script!\nChoose either GOLEMFIT or GF_FREQ'.format(
- str_enum(args.likelihood)
- )
- )
-
-
-def parse_args(args=None):
- """Parse command line arguments"""
- parser = argparse.ArgumentParser(
- description="BSM flavour ratio analysis",
- formatter_class=misc_utils.SortingHelpFormatter,
- )
- parser.add_argument(
- '--injected-ratio', type=float, nargs=3, default=[1, 1, 1],
- help='Set the central value for the injected flavour ratio at IceCube'
- )
- parser.add_argument(
- '--seed', type=misc_utils.seed_parse, default='25',
- help='Set the random seed value'
- )
- parser.add_argument(
- '--threads', type=misc_utils.thread_type, default='1',
- help='Set the number of threads to use (int or "max")'
- )
- parser.add_argument(
- '--outfile', type=str, default='./untitled',
- help='Path to output results'
- )
- try:
- gf_utils.gf_argparse(parser)
- except: pass
- llh_utils.likelihood_argparse(parser)
- mcmc_utils.mcmc_argparse(parser)
- nuisance_argparse(parser)
- misc_utils.remove_option(parser, 'sigma_ratio')
- if args is None: return parser.parse_args()
- else: return parser.parse_args(args.split())
-
-
-def gen_identifier(args):
- f = '_{0}_{1}'.format(*map(str_enum, (args.likelihood, args.data)))
- if args.data is not DataType.REAL:
- ir1, ir2, ir3 = misc_utils.solve_ratio(args.injected_ratio)
- f += '_INJ_{0:03d}_{1:03d}_{2:03d}'.format(ir1, ir2, ir3)
- return f
-
-
-def gen_figtext(args, asimov_paramset):
- f = ''
- if args.data is DataType.REAL:
- f += 'IceCube Preliminary'
- else:
- ir1, ir2, ir3 = misc_utils.solve_ratio(args.injected_ratio)
- f += 'Injected ratio = [{0}, {1}, {2}]'.format(ir1, ir2, ir3)
- for param in asimov_paramset:
- f += '\nInjected {0:20s} = {1:.3f}'.format(
- param.name, param.nominal_value
- )
- return f
-
-
-def triangle_llh(theta, args, hypo_paramset, fitter):
- """Log likelihood function for a given theta."""
- if len(theta) != len(hypo_paramset):
- raise AssertionError(
- 'Dimensions of scan is not the same as the input '
- 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset)
- )
- for idx, param in enumerate(hypo_paramset):
- param.value = theta[idx]
-
- if args.likelihood is Likelihood.GOLEMFIT:
- llh = gf_utils.get_llh(fitter, hypo_paramset)
- elif args.likelihood is Likelihood.GF_FREQ:
- llh = gf_utils.get_llh_freq(fitter, hypo_paramset)
-
- return llh
-
-
-def ln_prob(theta, args, hypo_paramset, fitter):
- lp = llh_utils.lnprior(theta, paramset=hypo_paramset)
- if not np.isfinite(lp):
- return -np.inf
- return lp + triangle_llh(
- theta,
- args = args,
- hypo_paramset = hypo_paramset,
- fitter = fitter
- )
-
-
-def main():
- args = parse_args()
- process_args(args)
- misc_utils.print_args(args)
-
- if args.seed is not None:
- np.random.seed(args.seed)
-
- asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance())
- hypo_paramset.extend(asimov_paramset.from_tag(ParamTag.BESTFIT))
- outfile = args.outfile + gen_identifier(args)
- print '== {0:<25} = {1}'.format('outfile', outfile)
-
- n_params = len(hypo_paramset)
- outfile = outfile + '_emcee_'
-
- print 'asimov_paramset', asimov_paramset
- print 'hypo_paramset', hypo_paramset
-
- if args.run_mcmc:
- fitter = gf_utils.setup_fitter(args, asimov_paramset)
-
- ln_prob_eval = partial(
- ln_prob,
- hypo_paramset = hypo_paramset,
- args = args,
- fitter = fitter
- )
-
- if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
- p0 = mcmc_utils.flat_seed(
- hypo_paramset, nwalkers=args.nwalkers
- )
- elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
- p0 = mcmc_utils.gaussian_seed(
- hypo_paramset, nwalkers=args.nwalkers
- )
-
- samples = mcmc_utils.mcmc(
- p0 = p0,
- ln_prob = ln_prob_eval,
- ndim = n_params,
- nwalkers = args.nwalkers,
- burnin = args.burnin,
- nsteps = args.nsteps,
- args = args,
- threads = 1
- # TODO(shivesh): broken because you cannot pickle a GolemFitPy object
- # threads = misc_utils.thread_factors(args.threads)[0]
- )
- mcmc_utils.save_chains(samples, outfile)
-
- of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior'
- plot_utils.chainer_plot(
- infile = outfile+'.npy',
- outfile = of,
- outformat = ['png'],
- args = args,
- llh_paramset = hypo_paramset,
- fig_text = gen_figtext(args, hypo_paramset)
- )
-
- print "DONE!"
-
-
-main.__doc__ = __doc__
-
-
-if __name__ == '__main__':
- main()