aboutsummaryrefslogtreecommitdiffstats
path: root/golemflavor/fr.py
diff options
context:
space:
mode:
Diffstat (limited to 'golemflavor/fr.py')
-rw-r--r--golemflavor/fr.py531
1 files changed, 531 insertions, 0 deletions
diff --git a/golemflavor/fr.py b/golemflavor/fr.py
new file mode 100644
index 0000000..ba9a8e9
--- /dev/null
+++ b/golemflavor/fr.py
@@ -0,0 +1,531 @@
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+Useful functions for the BSM flavour ratio analysis
+"""
+
+from __future__ import absolute_import, division, print_function
+
+from functools import partial
+
+import numpy as np
+
+from golemflavor.enums import ParamTag, Texture
+from golemflavor.misc import enum_parse, parse_bool
+
+import mpmath as mp
+mp.mp.dps = 100 # Computation precision
+
+# DTYPE = np.float128
+# CDTYPE = np.complex256
+# PI = np.arccos(DTYPE(-1))
+# SQRT = np.sqrt
+# COS = np.cos
+# SIN = np.sin
+# ACOS = np.arccos
+# ASIN = np.arcsin
+# EXP = np.exp
+
+DTYPE = mp.mpf
+CDTYPE = mp.mpc
+PI = mp.pi
+SQRT = mp.sqrt
+COS = mp.cos
+SIN = mp.sin
+ACOS = mp.acos
+ASIN = mp.asin
+EXP = mp.exp
+
+MASS_EIGENVALUES = [7.40E-23, 2.515E-21]
+"""SM mass eigenvalues."""
+
+SCALE_BOUNDARIES = {
+ 3 : (-32, -20),
+ 4 : (-40, -24),
+ 5 : (-48, -27),
+ 6 : (-56, -30),
+ 7 : (-64, -33),
+ 8 : (-72, -36)
+}
+"""Boundaries to scan the NP scale for each dimension."""
+
+
+def determinant(x):
+ """Calculate the determininant of a 3x3 matrix.
+
+ Parameters
+ ----------
+ x : ndarray, shape = (3, 3)
+
+ Returns
+ ----------
+ float determinant
+
+ Examples
+ ----------
+ >>> print determinant(
+ >>> [[-1.65238188-0.59549718j, 0.27486548-0.18437467j, -1.35524534-0.38542072j],
+ >>> [-1.07480906+0.29630449j, -0.47808456-0.80316821j, -0.88609356-1.50737308j],
+ >>> [-0.14924144-0.99230446j, 0.49504234+0.63639805j, 2.29258915-0.36537507j]]
+ >>> )
+ (2.7797571563274688+3.0841795325804848j)
+
+ """
+ return (x[0][0] * (x[1][1] * x[2][2] - x[2][1] * x[1][2])
+ -x[1][0] * (x[0][1] * x[2][2] - x[2][1] * x[0][2])
+ +x[2][0] * (x[0][1] * x[1][2] - x[1][1] * x[0][2]))
+
+
+def angles_to_fr(src_angles):
+ """Convert angular projection of the source flavour ratio back into the
+ flavour ratio.
+
+ Parameters
+ ----------
+ src_angles : list, length = 2
+ sin(phi)^4 and cos(psi)^2
+
+ Returns
+ ----------
+ flavour ratios (nue, numu, nutau)
+
+ Examples
+ ----------
+ >>> print angles_to_fr((0.3, 0.4))
+ (0.38340579025361626, 0.16431676725154978, 0.45227744249483393)
+
+ """
+ sphi4, c2psi = map(DTYPE, src_angles)
+
+ psi = (0.5)*ACOS(c2psi)
+
+ sphi2 = SQRT(sphi4)
+ cphi2 = 1. - sphi2
+ spsi2 = SIN(psi)**2
+ cspi2 = 1. - spsi2
+
+ x = float(abs(sphi2*cspi2))
+ y = float(abs(sphi2*spsi2))
+ z = float(abs(cphi2))
+ return x, y, z
+
+
+def angles_to_u(bsm_angles):
+ """Convert angular projection of the mixing matrix elements back into the
+ mixing matrix elements.
+
+ Parameters
+ ----------
+ bsm_angles : list, length = 4
+ sin(12)^2, cos(13)^4, sin(23)^2 and deltacp
+
+ Returns
+ ----------
+ unitary numpy ndarray of shape (3, 3)
+
+ Examples
+ ----------
+ >>> from fr import angles_to_u
+ >>> print angles_to_u((0.2, 0.3, 0.5, 1.5))
+ array([[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ],
+ [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ],
+ [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]])
+
+ """
+ s12_2, c13_4, s23_2, dcp = map(DTYPE, bsm_angles)
+ dcp = CDTYPE(dcp)
+
+ c12_2 = 1. - s12_2
+ c13_2 = SQRT(c13_4)
+ s13_2 = 1. - c13_2
+ c23_2 = 1. - s23_2
+
+ t12 = ASIN(SQRT(s12_2))
+ t13 = ACOS(SQRT(c13_2))
+ t23 = ASIN(SQRT(s23_2))
+
+ c12 = COS(t12)
+ s12 = SIN(t12)
+ c13 = COS(t13)
+ s13 = SIN(t13)
+ c23 = COS(t23)
+ s23 = SIN(t23)
+
+ p1 = np.array([[1 , 0 , 0] , [0 , c23 , s23] , [0 , -s23 , c23]] , dtype=CDTYPE)
+ p2 = np.array([[c13 , 0 , s13*EXP(-1j*dcp)] , [0 , 1 , 0] , [-s13*EXP(1j*dcp) , 0 , c13]] , dtype=CDTYPE)
+ p3 = np.array([[c12 , s12 , 0] , [-s12 , c12 , 0] , [0 , 0 , 1]] , dtype=CDTYPE)
+
+ u = np.dot(np.dot(p1, p2), p3)
+ return u
+
+
+def cardano_eqn(ham):
+ """Diagonalise the effective Hamiltonian 3x3 matrix into the form
+ h_{eff} = UE_{eff}U^{dagger} using the procedure in PRD91, 052003 (2015).
+
+ Parameters
+ ----------
+ ham : numpy ndarray of shape (3, 3)
+ sin(12)^2, cos(13)^4, sin(23)^2 and deltacp
+
+ Returns
+ ----------
+ unitary numpy ndarray of shape (3, 3)
+
+ Examples
+ ----------
+ >>> import numpy as np
+ >>> from fr import cardano_eqn
+ >>> ham = np.array(
+ >>> [[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ],
+ >>> [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ],
+ >>> [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]]
+ >>> )
+ >>> print cardano_eqn(ham)
+ array([[-0.11143379-0.58863683j, -0.09067747-0.48219068j, 0.34276625-0.08686465j],
+ [ 0.14835519+0.47511473j, -0.18299305+0.40777481j, 0.31906300+0.82514223j],
+ [-0.62298966+0.07231745j, -0.61407815-0.42709603j, 0.03660313+0.30160428j]])
+
+ """
+ if np.shape(ham) != (3, 3):
+ raise ValueError(
+ 'Input matrix should be a square and dimension 3, '
+ 'got\n{0}'.format(ham)
+ )
+
+ a = -np.trace(ham)
+ b = DTYPE(1)/2 * ((np.trace(ham))**DTYPE(2) - np.trace(np.dot(ham, ham)))
+ c = -determinant(ham)
+
+ Q = (DTYPE(1)/9) * (a**DTYPE(2) - DTYPE(3)*b)
+ R = (DTYPE(1)/54) * (DTYPE(2)*a**DTYPE(3) - DTYPE(9)*a*b + DTYPE(27)*c)
+ theta = ACOS(R / SQRT(Q**DTYPE(3)))
+
+ E1 = -DTYPE(2) * SQRT(Q) * COS(theta/DTYPE(3)) - (DTYPE(1)/3)*a
+ E2 = -DTYPE(2) * SQRT(Q) * COS((theta - DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a
+ E3 = -DTYPE(2) * SQRT(Q) * COS((theta + DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a
+
+ A1 = ham[1][2] * (ham[0][0] - E1) - ham[1][0]*ham[0][2]
+ A2 = ham[1][2] * (ham[0][0] - E2) - ham[1][0]*ham[0][2]
+ A3 = ham[1][2] * (ham[0][0] - E3) - ham[1][0]*ham[0][2]
+
+ B1 = ham[2][0] * (ham[1][1] - E1) - ham[2][1]*ham[1][0]
+ B2 = ham[2][0] * (ham[1][1] - E2) - ham[2][1]*ham[1][0]
+ B3 = ham[2][0] * (ham[1][1] - E3) - ham[2][1]*ham[1][0]
+
+ C1 = ham[1][0] * (ham[2][2] - E1) - ham[1][2]*ham[2][0]
+ C2 = ham[1][0] * (ham[2][2] - E2) - ham[1][2]*ham[2][0]
+ C3 = ham[1][0] * (ham[2][2] - E3) - ham[1][2]*ham[2][0]
+
+ N1 = SQRT(np.abs(A1*B1)**2 + np.abs(A1*C1)**2 + np.abs(B1*C1)**2)
+ N2 = SQRT(np.abs(A2*B2)**2 + np.abs(A2*C2)**2 + np.abs(B2*C2)**2)
+ N3 = SQRT(np.abs(A3*B3)**2 + np.abs(A3*C3)**2 + np.abs(B3*C3)**2)
+
+ mm = np.array([
+ [np.conjugate(B1)*C1 / N1, np.conjugate(B2)*C2 / N2, np.conjugate(B3)*C3 / N3],
+ [A1*C1 / N1, A2*C2 / N2, A3*C3 / N3],
+ [A1*B1 / N1, A2*B2 / N2, A3*B3 / N3]
+ ])
+ return mm
+
+
+def normalise_fr(fr):
+ """Normalise an input flavour combination to a flavour ratio.
+
+ Parameters
+ ----------
+ fr : list, length = 3
+ flavour combination
+
+ Returns
+ ----------
+ numpy ndarray flavour ratio
+
+ Examples
+ ----------
+ >>> from fr import normalise_fr
+ >>> print normalise_fr((1, 2, 3))
+ array([ 0.16666667, 0.33333333, 0.5 ])
+
+ """
+ return np.array(fr) / float(np.sum(fr))
+
+
+def fr_argparse(parser):
+ parser.add_argument(
+ '--injected-ratio', type=float, nargs=3, required=False,
+ help='Injected ratio if not using data'
+ )
+ parser.add_argument(
+ '--source-ratio', type=float, nargs=3, default=[1, 2, 0],
+ help='Set the source flavour ratio for the case when you want to fix it'
+ )
+ parser.add_argument(
+ '--no-bsm', type=parse_bool, default='False',
+ help='Turn off BSM terms'
+ )
+ parser.add_argument(
+ '--dimension', type=int, default=3,
+ help='Set the new physics dimension to consider'
+ )
+ parser.add_argument(
+ '--texture', type=partial(enum_parse, c=Texture),
+ default='none', choices=Texture, help='Set the BSM mixing texture'
+ )
+ parser.add_argument(
+ '--binning', default=[6e4, 1e7, 20], type=float, nargs=3,
+ help='Binning for spectral energy dependance'
+ )
+
+
+def fr_to_angles(ratios):
+ """Convert from flavour ratio into the angular projection of the flavour
+ ratios.
+
+ Parameters
+ ----------
+ TODO(shivesh)
+ """
+ fr0, fr1, fr2 = normalise_fr(ratios)
+
+ cphi2 = fr2
+ sphi2 = (1.0 - cphi2)
+
+ if sphi2 == 0.:
+ return (0., 0.)
+ else:
+ cpsi2 = fr0 / sphi2
+
+ sphi4 = sphi2**2
+ c2psi = COS(ACOS(SQRT(cpsi2))*2)
+
+ return map(float, (sphi4, c2psi))
+
+
+NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935))
+"""NuFIT mixing matrix (s_12^2, c_13^4, s_23^2, dcp)"""
+
+
+def params_to_BSMu(bsm_angles, dim, energy, mass_eigenvalues=MASS_EIGENVALUES,
+ sm_u=NUFIT_U, no_bsm=False, texture=Texture.NONE,
+ check_uni=True, epsilon=1e-7):
+ """Construct the BSM mixing matrix from the BSM parameters.
+
+ Parameters
+ ----------
+ bsm_angles : list, length > 3
+ BSM parameters
+
+ dim : int
+ Dimension of BSM physics
+
+ energy : float
+ Energy in GeV
+
+ mass_eigenvalues : list, length = 2
+ SM mass eigenvalues
+
+ sm_u : numpy ndarray, dimension 3
+ SM mixing matrix
+
+ no_bsm : bool
+ Turn off BSM behaviour
+
+ texture : Texture
+ BSM mixing texture
+
+ check_uni : bool
+ Check the resulting BSM mixing matrix is unitary
+
+ Returns
+ ----------
+ unitary numpy ndarray of shape (3, 3)
+
+ Examples
+ ----------
+ >>> from fr import params_to_BSMu
+ >>> print params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), dim=3, energy=1000)
+ array([[ 0.18658169 -6.34190523e-01j, -0.26460391 +2.01884200e-01j, 0.67247096 -9.86808417e-07j],
+ [-0.50419832 +2.14420570e-01j, -0.36013768 +5.44254868e-01j, 0.03700961 +5.22039894e-01j],
+ [-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]])
+
+ """
+ if np.shape(sm_u) != (3, 3):
+ raise ValueError(
+ 'Input matrix should be a square and dimension 3, '
+ 'got\n{0}'.format(sm_u)
+ )
+
+ if not isinstance(bsm_angles, (list, tuple)):
+ bsm_angles = [bsm_angles]
+
+ z = 0.+1e-9
+ if texture is Texture.OEU:
+ np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = 0.5, 1.0, z, z, bsm_angles
+ elif texture is Texture.OET:
+ np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = z, 0.25, z, z, bsm_angles
+ elif texture is Texture.OUT:
+ np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = z, 1.0, 0.5, z, bsm_angles
+ else:
+ np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = bsm_angles
+
+ sc2 = np.power(10., sc2)
+ sc1 = sc2 / 100.
+
+ mass_matrix = np.array(
+ [[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]]
+ )
+ sm_ham = (1./(2*energy))*np.dot(sm_u, np.dot(mass_matrix, sm_u.conj().T))
+ if no_bsm:
+ eg_vector = cardano_eqn(sm_ham)
+ else:
+ NP_U = angles_to_u((np_s12_2, np_c13_4, np_s23_2, np_dcp))
+ SC_U = np.array(
+ [[0, 0, 0], [0, sc1, 0], [0, 0, sc2]]
+ )
+ bsm_term = (energy**(dim-3)) * np.dot(NP_U, np.dot(SC_U, NP_U.conj().T))
+ bsm_ham = sm_ham + bsm_term
+ eg_vector = cardano_eqn(bsm_ham)
+
+ if check_uni:
+ test_unitarity(eg_vector, rse=True, epsilon=epsilon)
+ return eg_vector
+
+
+def flux_averaged_BSMu(theta, args, spectral_index, llh_paramset):
+ if len(theta) != len(llh_paramset):
+ raise AssertionError(
+ 'Length of MCMC scan is not the same as the input '
+ 'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
+ )
+
+ for idx, param in enumerate(llh_paramset):
+ param.value = theta[idx]
+
+ bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:])
+ bin_width = np.abs(np.diff(args.binning))
+
+ source_flux = np.array(
+ [fr * np.power(bin_centers, spectral_index)
+ for fr in args.source_ratio]
+ ).T
+
+ bsm_angles = llh_paramset.from_tag(
+ [ParamTag.SCALE, ParamTag.MMANGLES], values=True
+ )
+
+ m_eig_names = ['m21_2', 'm3x_2']
+ ma_names = ['s_12_2', 'c_13_4', 's_23_2', 'dcp']
+
+ if set(m_eig_names+ma_names).issubset(set(llh_paramset.names)):
+ mass_eigenvalues = [x.value for x in llh_paramset if x.name in m_eig_names]
+ sm_u = angles_to_u(
+ [x.value for x in llh_paramset if x.name in ma_names]
+ )
+ else:
+ mass_eigenvalues = MASS_EIGENVALUES
+ sm_u = NUFIT_U
+
+ if args.no_bsm:
+ fr = u_to_fr(source_flux, np.array(sm_u, dtype=np.complex256))
+ else:
+ mf_perbin = []
+ for i_sf, sf_perbin in enumerate(source_flux):
+ u = params_to_BSMu(
+ bsm_angles = bsm_angles,
+ dim = args.dimension,
+ energy = bin_centers[i_sf],
+ mass_eigenvalues = mass_eigenvalues,
+ sm_u = sm_u,
+ no_bsm = args.no_bsm,
+ texture = args.texture,
+ )
+ fr = u_to_fr(sf_perbin, u)
+ mf_perbin.append(fr)
+ measured_flux = np.array(mf_perbin).T
+ intergrated_measured_flux = np.sum(measured_flux * bin_width, axis=1)
+ averaged_measured_flux = (1./(args.binning[-1] - args.binning[0])) * \
+ intergrated_measured_flux
+ fr = averaged_measured_flux / np.sum(averaged_measured_flux)
+ return fr
+
+
+def test_unitarity(x, prnt=False, rse=False, epsilon=None):
+ """Test the unitarity of a matrix.
+
+ Parameters
+ ----------
+ x : numpy ndarray
+ Matrix to evaluate
+
+ prnt : bool
+ Print the result
+
+ rse : bool
+ Raise Assertion if matrix is not unitary
+
+ Returns
+ ----------
+ numpy ndarray
+
+ Examples
+ ----------
+ >>> from fr import test_unitarity
+ >>> x = np.identity(3)
+ >>> print test_unitarity(x)
+ array([[ 1., 0., 0.],
+ [ 0., 1., 0.],
+ [ 0., 0., 1.]])
+
+ """
+ f = np.abs(np.dot(x, x.conj().T), dtype=DTYPE)
+ if prnt:
+ print('Unitarity test:\n{0}'.format(f))
+ if rse:
+ if not np.abs(np.trace(f) - 3.) < epsilon or \
+ not np.abs(np.sum(f) - 3.) < epsilon:
+ raise AssertionError(
+ 'Matrix is not unitary!\nx\n{0}\ntest '
+ 'u\n{1}'.format(x, f)
+ )
+ return f
+
+
+def u_to_fr(source_fr, matrix):
+ """Compute the observed flavour ratio assuming decoherence.
+
+ Parameters
+ ----------
+ source_fr : list, length = 3
+ Source flavour ratio components
+
+ matrix : numpy ndarray, dimension 3
+ Mixing matrix
+
+ Returns
+ ----------
+ Measured flavour ratio
+
+ Examples
+ ----------
+ >>> from fr import params_to_BSMu, u_to_fr
+ >>> print u_to_fr((1, 2, 0), params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), 3, 1000))
+ array([ 0.33740075, 0.33176584, 0.33083341])
+
+ """
+ try:
+ composition = np.einsum(
+ 'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr,
+ )
+ except:
+ matrix = np.array(matrix, dtype=np.complex256)
+ composition = np.einsum(
+ 'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr,
+ )
+ pass
+
+ ratio = composition / np.sum(source_fr)
+ return ratio