aboutsummaryrefslogtreecommitdiffstats
path: root/golemflavor/plot.py
diff options
context:
space:
mode:
Diffstat (limited to 'golemflavor/plot.py')
-rw-r--r--golemflavor/plot.py1030
1 files changed, 1030 insertions, 0 deletions
diff --git a/golemflavor/plot.py b/golemflavor/plot.py
new file mode 100644
index 0000000..d19a52e
--- /dev/null
+++ b/golemflavor/plot.py
@@ -0,0 +1,1030 @@
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 19, 2018
+
+"""
+Plotting functions for the BSM flavour ratio analysis
+"""
+
+from __future__ import absolute_import, division
+
+import os
+import socket
+from copy import deepcopy
+
+import numpy as np
+import numpy.ma as ma
+from scipy.interpolate import splev, splprep
+from scipy.ndimage.filters import gaussian_filter
+
+import matplotlib as mpl
+import matplotlib.patches as patches
+import matplotlib.gridspec as gridspec
+mpl.use('Agg')
+
+from matplotlib import rc
+from matplotlib import pyplot as plt
+from matplotlib.offsetbox import AnchoredText
+from matplotlib.lines import Line2D
+from matplotlib.patches import Patch
+from matplotlib.patches import Arrow
+
+tRed = list(np.array([226,101,95]) / 255.)
+tBlue = list(np.array([96,149,201]) / 255.)
+tGreen = list(np.array([170,196,109]) / 255.)
+
+import getdist
+from getdist import plots, mcsamples
+
+import ternary
+from ternary.heatmapping import polygon_generator
+
+import shapely.geometry as geometry
+
+from shapely.ops import cascaded_union, polygonize
+from scipy.spatial import Delaunay
+
+from utils.enums import DataType, str_enum
+from utils.enums import Likelihood, ParamTag, StatCateg, Texture
+from utils.misc import get_units, make_dir, solve_ratio, interval
+from utils.fr import angles_to_u, angles_to_fr, SCALE_BOUNDARIES
+
+
+BAYES_K = 1. # Strong degree of belief.
+# BAYES_K = 3/2. # Very strong degree of belief.
+# BAYES_K = 2. # Decisive degree of belief
+
+
+LV_ATMO_90PC_LIMITS = {
+ 3: (2E-24, 1E-1),
+ 4: (2.7E-28, 3.16E-25),
+ 5: (1.5E-32, 1.12E-27),
+ 6: (9.1E-37, 2.82E-30),
+ 7: (3.6E-41, 1.77E-32),
+ 8: (1.4E-45, 1.00E-34)
+}
+
+
+PS = 8.203E-20 # GeV^{-1}
+PLANCK_SCALE = {
+ 5: PS,
+ 6: PS**2,
+ 7: PS**3,
+ 8: PS**4
+}
+
+
+if os.path.isfile('./plot_llh/paper.mplstyle'):
+ plt.style.use('./plot_llh/paper.mplstyle')
+elif os.environ.get('GOLEMSOURCEPATH') is not None:
+ plt.style.use(os.environ['GOLEMSOURCEPATH']+'/GolemFit/scripts/paper/paper.mplstyle')
+if 'submitter' in socket.gethostname():
+ rc('text', usetex=False)
+
+mpl.rcParams['text.latex.preamble'] = [
+ r'\usepackage{xcolor}',
+ r'\usepackage{amsmath}',
+ r'\usepackage{amssymb}']
+mpl.rcParams['text.latex.unicode'] = True
+
+
+def gen_figtext(args):
+ """Generate the figure text."""
+ t = r'$'
+ if args.data is DataType.REAL:
+ t += r'\textbf{IceCube\:Preliminary}' + '$\n$'
+ elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
+ t += r'{\rm\bf IceCube\:Simulation}' + '$\n$'
+ t += r'\rm{Injected\:composition}'+r'\:=\:({0})_\oplus'.format(
+ solve_ratio(args.injected_ratio).replace('_', ':')
+ ) + '$\n$'
+ t += r'{\rm Source\:composition}'+r'\:=\:({0})'.format(
+ solve_ratio(args.source_ratio).replace('_', ':')
+ ) + r'_\text{S}'
+ t += '$\n$' + r'{\rm Dimension}'+r' = {0}$'.format(args.dimension)
+ return t
+
+
+def texture_label(x, dim):
+ cpt = r'c' if dim % 2 == 0 else r'a'
+ if x == Texture.OEU:
+ # return r'$\mathcal{O}_{e\mu}$'
+ return r'$\mathring{'+cpt+r'}_{e\mu}^{('+str(int(dim))+r')}$'
+ elif x == Texture.OET:
+ # return r'$\mathcal{O}_{e\tau}$'
+ return r'$\mathring{'+cpt+r'}_{\tau e}^{('+str(int(dim))+r')}$'
+ elif x == Texture.OUT:
+ # return r'$\mathcal{O}_{\mu\tau}$'
+ return r'$\mathring{'+cpt+r'}_{\mu\tau}^{('+str(int(dim))+r')}$'
+ else:
+ raise AssertionError
+
+
+def cmap_discretize(cmap, N):
+ colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.)))
+ colors_rgba = cmap(colors_i)
+ indices = np.linspace(0, 1., N+1)
+ cdict = {}
+ for ki,key in enumerate(('red','green','blue')):
+ cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki]) for i in xrange(N+1) ]
+ # Return colormap object.
+ return mpl.colors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
+
+
+def get_limit(scales, statistic, args, mask_initial=False, return_interp=False):
+ max_st = np.max(statistic)
+ print 'scales, stat', zip(scales, statistic)
+ if args.stat_method is StatCateg.BAYESIAN:
+ if (statistic[0] - max_st) > np.log(10**(BAYES_K)):
+ raise AssertionError('Discovered LV!')
+
+ try:
+ tck, u = splprep([scales, statistic], s=0)
+ except:
+ print 'Failed to spline'
+ # return None
+ raise
+ sc, st = splev(np.linspace(0, 1, 1000), tck)
+
+ if mask_initial:
+ scales_rm = sc[sc >= scales[1]]
+ statistic_rm = st[sc >= scales[1]]
+ else:
+ scales_rm = sc
+ statistic_rm = st
+
+ min_idx = np.argmin(scales)
+ null = statistic[min_idx]
+ # if np.abs(statistic_rm[0] - null) > 0.8:
+ # print 'Warning, null incompatible with smallest scanned scale! For ' \
+ # 'DIM {0} [{1}, {2}, {3}]!'.format(
+ # args.dimension, *args.source_ratio
+ # )
+ # null = statistic_rm[0]
+ if args.stat_method is StatCateg.BAYESIAN:
+ reduced_ev = -(statistic_rm - null)
+ print '[reduced_ev > np.log(10**(BAYES_K))]', np.sum([reduced_ev > np.log(10**(BAYES_K))])
+ al = scales_rm[reduced_ev > np.log(10**(BAYES_K))]
+ else:
+ assert 0
+ if len(al) == 0:
+ print 'No points for DIM {0} [{1}, {2}, {3}]!'.format(
+ args.dimension, *args.source_ratio
+ )
+ return None
+ re = -(statistic-null)[scales > al[0]]
+ if np.sum(re < np.log(10**(BAYES_K)) - 0.1) >= 2:
+ print 'Warning, peaked contour does not exclude large scales! For ' \
+ 'DIM {0} [{1}, {2}, {3}]!'.format(
+ args.dimension, *args.source_ratio
+ )
+ return None
+ if np.sum(re >= np.log(10**(BAYES_K)) + 0.0) < 2:
+ print 'Warning, only single point above threshold! For ' \
+ 'DIM {0} [{1}, {2}, {3}]!'.format(
+ args.dimension, *args.source_ratio
+ )
+ return None
+
+ if return_interp:
+ return (scales_rm, reduced_ev)
+
+ # Divide by 2 to convert to standard SME coefficient
+ lim = al[0] - np.log10(2.)
+ # lim = al[0]
+ print 'limit = {0}'.format(lim)
+ return lim
+
+
+def heatmap(data, scale, vmin=None, vmax=None, style='triangular'):
+ for k, v in data.items():
+ data[k] = np.array(v)
+ style = style.lower()[0]
+ if style not in ["t", "h", 'd']:
+ raise ValueError("Heatmap style must be 'triangular', 'dual-triangular', or 'hexagonal'")
+
+ vertices_values = polygon_generator(data, scale, style)
+
+ vertices = []
+ for v, value in vertices_values:
+ vertices.append(v)
+ return vertices
+
+
+def get_tax(ax, scale, ax_labels, rot_ax_labels=False, fontsize=23):
+ ax.set_aspect('equal')
+
+ # Boundary and Gridlines
+ fig, tax = ternary.figure(ax=ax, scale=scale)
+
+ # Draw Boundary and Gridlines
+ tax.boundary(linewidth=2.0)
+ tax.gridlines(color='grey', multiple=scale/5., linewidth=0.5, alpha=0.7, ls='--')
+ # tax.gridlines(color='grey', multiple=scale/10., linewidth=0.2, alpha=1, ls=':')
+
+ # Set Axis labels and Title
+ if rot_ax_labels: roty, rotz = (-60, 60)
+ else: roty, rotz = (0, 0)
+ tax.bottom_axis_label(
+ ax_labels[0], fontsize=fontsize+4,
+ position=(0.55, -0.10/2, 0.5), rotation=0
+ )
+ tax.right_axis_label(
+ ax_labels[1], fontsize=fontsize+4,
+ position=(2./5+0.1, 3./5+0.06, 0), rotation=roty
+ )
+ tax.left_axis_label(
+ ax_labels[2], fontsize=fontsize+4,
+ position=(-0.15, 3./5+0.1, 2./5), rotation=rotz
+ )
+
+ # Remove default Matplotlib axis
+ tax.get_axes().axis('off')
+ tax.clear_matplotlib_ticks()
+
+ # Set ticks
+ ticks = np.linspace(0, 1, 6)
+ tax.ticks(ticks=ticks, locations=ticks*scale, axis='lr', linewidth=1,
+ offset=0.03, fontsize=fontsize, tick_formats='%.1f')
+ tax.ticks(ticks=ticks, locations=ticks*scale, axis='b', linewidth=1,
+ offset=0.02, fontsize=fontsize, tick_formats='%.1f')
+ # tax.ticks()
+
+ tax._redraw_labels()
+
+ return tax
+
+
+def project(p):
+ """Convert from flavour to cartesian."""
+ a, b, c = p
+ x = a + b/2.
+ y = b * np.sqrt(3)/2.
+ return [x, y]
+
+
+def project_toflavour(p, nbins):
+ """Convert from cartesian to flavour space."""
+ x, y = p
+ b = y / (np.sqrt(3)/2.)
+ a = x - b/2.
+ return [a, b, nbins-a-b]
+
+
+def tax_fill(ax, points, nbins, **kwargs):
+ pol = np.array(map(project, points))
+ ax.fill(pol.T[0]*nbins, pol.T[1]*nbins, **kwargs)
+
+
+def alpha_shape(points, alpha):
+ """
+ Compute the alpha shape (concave hull) of a set
+ of points.
+ @param points: Iterable container of points.
+ @param alpha: alpha value to influence the
+ gooeyness of the border. Smaller numbers
+ don't fall inward as much as larger numbers.
+ Too large, and you lose everything!
+ """
+ if len(points) < 4:
+ # When you have a triangle, there is no sense
+ # in computing an alpha shape.
+ return geometry.MultiPoint(list(points)).convex_hull
+ def add_edge(edges, edge_points, coords, i, j):
+ """
+ Add a line between the i-th and j-th points,
+ if not in the list already
+ """
+ if (i, j) in edges or (j, i) in edges:
+ # already added
+ return
+ edges.add( (i, j) )
+ edge_points.append(coords[ [i, j] ])
+ coords = np.array([point.coords[0]
+ for point in points])
+ tri = Delaunay(coords)
+ edges = set()
+ edge_points = []
+ # loop over triangles:
+ # ia, ib, ic = indices of corner points of the
+ # triangle
+ for ia, ib, ic in tri.vertices:
+ pa = coords[ia]
+ pb = coords[ib]
+ pc = coords[ic]
+ # Lengths of sides of triangle
+ a = np.sqrt((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)
+ b = np.sqrt((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)
+ c = np.sqrt((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)
+ # Semiperimeter of triangle
+ s = (a + b + c)/2.0
+ # Area of triangle by Heron's formula
+ area = np.sqrt(s*(s-a)*(s-b)*(s-c))
+ circum_r = a*b*c/(4.0*area)
+ # Here's the radius filter.
+ #print circum_r
+ if circum_r < 1.0/alpha:
+ add_edge(edges, edge_points, coords, ia, ib)
+ add_edge(edges, edge_points, coords, ib, ic)
+ add_edge(edges, edge_points, coords, ic, ia)
+ m = geometry.MultiLineString(edge_points)
+ triangles = list(polygonize(m))
+ return cascaded_union(triangles), edge_points
+
+
+def flavour_contour(frs, nbins, coverage, ax=None, smoothing=0.4,
+ hist_smooth=0.05, plot=True, fill=False, oversample=1.,
+ delaunay=False, d_alpha=1.5, d_gauss=0.08, debug=False,
+ **kwargs):
+ """Plot the flavour contour for a specified coverage."""
+ # Histogram in flavour space
+ os_nbins = nbins * oversample
+ H, b = np.histogramdd(
+ (frs[:,0], frs[:,1], frs[:,2]),
+ bins=(os_nbins+1, os_nbins+1, os_nbins+1),
+ range=((0, 1), (0, 1), (0, 1))
+ )
+ H = H / np.sum(H)
+
+ # 3D smoothing
+ H_s = gaussian_filter(H, sigma=hist_smooth)
+
+ # Finding coverage
+ H_r = np.ravel(H_s)
+ H_rs = np.argsort(H_r)[::-1]
+ H_crs = np.cumsum(H_r[H_rs])
+ thres = np.searchsorted(H_crs, coverage/100.)
+ mask_r = np.zeros(H_r.shape)
+ mask_r[H_rs[:thres]] = 1
+ mask = mask_r.reshape(H_s.shape)
+
+ # Get vertices inside covered region
+ binx = np.linspace(0, 1, os_nbins+1)
+ interp_dict = {}
+ for i in xrange(len(binx)):
+ for j in xrange(len(binx)):
+ for k in xrange(len(binx)):
+ if mask[i][j][k] == 1:
+ interp_dict[(i, j, k)] = H_s[i, j, k]
+ vertices = np.array(heatmap(interp_dict, os_nbins))
+ points = vertices.reshape((len(vertices)*3, 2))
+ if debug:
+ ax.scatter(*(points/float(oversample)).T, marker='o', s=3, alpha=1.0, color=kwargs['color'], zorder=9)
+
+ pc = geometry.MultiPoint(points)
+ if not delaunay:
+ # Convex full to find points forming exterior bound
+ polygon = pc.convex_hull
+ ex_cor = np.array(list(polygon.exterior.coords))
+ else:
+ # Delaunay
+ concave_hull, edge_points = alpha_shape(pc, alpha=d_alpha)
+ polygon = geometry.Polygon(concave_hull.buffer(1))
+ if d_gauss == 0.:
+ ex_cor = np.array(list(polygon.exterior.coords))
+ else:
+ ex_cor = gaussian_filter(
+ np.array(list(polygon.exterior.coords)), sigma=d_gauss
+ )
+
+ # Join points with a spline
+ tck, u = splprep([ex_cor.T[0], ex_cor.T[1]], s=0., per=1, k=1)
+ xi, yi = map(np.array, splev(np.linspace(0, 1, 300), tck))
+
+ # Spline again to smooth
+ if smoothing != 0:
+ tck, u = splprep([xi, yi], s=smoothing, per=1, k=3)
+ xi, yi = map(np.array, splev(np.linspace(0, 1, 600), tck))
+
+ xi /= float(oversample)
+ yi /= float(oversample)
+ ev_polygon = np.dstack((xi, yi))[0]
+
+ # Remove points interpolated outside flavour triangle
+ f_ev_polygon = np.array(map(lambda x: project_toflavour(x, nbins), ev_polygon))
+
+ xf, yf, zf = f_ev_polygon.T
+ mask = np.array((xf < 0) | (yf < 0) | (zf < 0) | (xf > nbins) |
+ (yf > nbins) | (zf > nbins))
+ ev_polygon = np.dstack((xi[~mask], yi[~mask]))[0]
+
+ # Plot
+ if plot:
+ if fill:
+ ax.fill(
+ ev_polygon.T[0], ev_polygon.T[1],
+ label=r'{0}\%'.format(int(coverage)), **kwargs
+ )
+ else:
+ ax.plot(
+ ev_polygon.T[0], ev_polygon.T[1],
+ label=r'{0}\%'.format(int(coverage)), **kwargs
+ )
+ else:
+ return ev_polygon
+
+def plot_Tchain(Tchain, axes_labels, ranges):
+ """Plot the Tchain using getdist."""
+ Tsample = mcsamples.MCSamples(
+ samples=Tchain, labels=axes_labels, ranges=ranges
+ )
+
+ Tsample.updateSettings({'contours': [0.90, 0.99]})
+ Tsample.num_bins_2D=10
+ Tsample.fine_bins_2D=50
+ Tsample.smooth_scale_2D=0.05
+
+ g = plots.getSubplotPlotter()
+ g.settings.num_plot_contours = 2
+ g.settings.axes_fontsize = 10
+ g.settings.figure_legend_frame = False
+ g.settings.lab_fontsize = 20
+ g.triangle_plot(
+ [Tsample], filled=True,# contour_colors=['green', 'lightgreen']
+ )
+ return g
+
+
+def chainer_plot(infile, outfile, outformat, args, llh_paramset, fig_text=None,
+ labels=None, ranges=None):
+ """Make the triangle plot."""
+ if hasattr(args, 'plot_elements'):
+ if not args.plot_angles and not args.plot_elements:
+ return
+ elif not args.plot_angles:
+ return
+
+ if not isinstance(infile, np.ndarray):
+ raw = np.load(infile)
+ else:
+ raw = infile
+ print 'raw.shape', raw.shape
+ print 'raw', raw
+
+ make_dir(outfile), make_dir
+ if fig_text is None:
+ fig_text = gen_figtext(args)
+
+ if labels is None: axes_labels = llh_paramset.labels
+ else: axes_labels = labels
+ if ranges is None: ranges = llh_paramset.ranges
+
+ if args.plot_angles:
+ print "Making triangle plots"
+ Tchain = raw
+ g = plot_Tchain(Tchain, axes_labels, ranges)
+
+ mpl.pyplot.figtext(0.6, 0.7, fig_text, fontsize=20)
+
+ # for i_ax_1, ax_1 in enumerate(g.subplots):
+ # for i_ax_2, ax_2 in enumerate(ax_1):
+ # if i_ax_1 == i_ax_2:
+ # itv = interval(Tchain[:,i_ax_1], percentile=90.)
+ # for l in itv:
+ # ax_2.axvline(l, color='gray', ls='--')
+ # ax_2.set_title(r'${0:.2f}_{{{1:.2f}}}^{{+{2:.2f}}}$'.format(
+ # itv[1], itv[0]-itv[1], itv[2]-itv[1]
+ # ), fontsize=10)
+
+ # if not args.fix_mixing:
+ # sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
+ # itv = interval(Tchain[:,sc_index], percentile=90.)
+ # mpl.pyplot.figtext(
+ # 0.5, 0.3, 'Scale 90% Interval = [1E{0}, 1E{1}], Center = '
+ # '1E{2}'.format(itv[0], itv[2], itv[1])
+ # )
+
+ for of in outformat:
+ print 'Saving', outfile+'_angles.'+of
+ g.export(outfile+'_angles.'+of)
+
+ if not hasattr(args, 'plot_elements'):
+ return
+
+ if args.plot_elements:
+ print "Making triangle plots"
+ if args.fix_mixing_almost:
+ raise NotImplementedError
+ nu_index = llh_paramset.from_tag(ParamTag.NUISANCE, index=True)
+ fr_index = llh_paramset.from_tag(ParamTag.MMANGLES, index=True)
+ sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
+ if not args.fix_source_ratio:
+ sr_index = llh_paramset.from_tag(ParamTag.SRCANGLES, index=True)
+
+ nu_elements = raw[:,nu_index]
+ fr_elements = np.array(map(flat_angles_to_u, raw[:,fr_index]))
+ sc_elements = raw[:,sc_index]
+ if not args.fix_source_ratio:
+ sr_elements = np.array(map(angles_to_fr, raw[:,sr_index]))
+ if args.fix_source_ratio:
+ Tchain = np.column_stack(
+ [nu_elements, fr_elements, sc_elements]
+ )
+ else:
+ Tchain = np.column_stack(
+ [nu_elements, fr_elements, sc_elements, sr_elements]
+ )
+
+ trns_ranges = np.array(ranges)[nu_index,].tolist()
+ trns_axes_labels = np.array(axes_labels)[nu_index,].tolist()
+ if args.fix_mixing is not MixingScenario.NONE:
+ trns_axes_labels += \
+ [r'\mid \tilde{U}_{e1} \mid' , r'\mid \tilde{U}_{e2} \mid' , r'\mid \tilde{U}_{e3} \mid' , \
+ r'\mid \tilde{U}_{\mu1} \mid' , r'\mid \tilde{U}_{\mu2} \mid' , r'\mid \tilde{U}_{\mu3} \mid' , \
+ r'\mid \tilde{U}_{\tau1} \mid' , r'\mid \tilde{U}_{\tau2} \mid' , r'\mid \tilde{U}_{\tau3} \mid']
+ trns_ranges += [(0, 1)] * 9
+ if not args.fix_scale:
+ trns_axes_labels += [np.array(axes_labels)[sc_index].tolist()]
+ trns_ranges += [np.array(ranges)[sc_index].tolist()]
+ if not args.fix_source_ratio:
+ trns_axes_labels += [r'\phi_e', r'\phi_\mu', r'\phi_\tau']
+ trns_ranges += [(0, 1)] * 3
+
+ g = plot_Tchain(Tchain, trns_axes_labels, trns_ranges)
+
+ if args.data is DataType.REAL:
+ plt.text(0.8, 0.7, 'IceCube Preliminary', color='red', fontsize=15,
+ ha='center', va='center')
+ elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
+ plt.text(0.8, 0.7, 'IceCube Simulation', color='red', fontsize=15,
+ ha='center', va='center')
+
+ mpl.pyplot.figtext(0.5, 0.7, fig_text, fontsize=15)
+ for of in outformat:
+ print 'Saving', outfile+'_elements'+of
+ g.export(outfile+'_elements.'+of)
+
+
+def plot_statistic(data, outfile, outformat, args, scale_param, label=None):
+ """Make MultiNest factor or LLH value plot."""
+ print 'Making Statistic plot'
+ fig_text = gen_figtext(args)
+ if label is not None: fig_text += '\n' + label
+
+ print 'data', data
+ print 'data.shape', data.shape
+ print 'outfile', outfile
+ try:
+ scales, statistic = ma.compress_rows(data).T
+ lim = get_limit(deepcopy(scales), deepcopy(statistic), args, mask_initial=True)
+ tck, u = splprep([scales, statistic], s=0)
+ except:
+ return
+ sc, st = splev(np.linspace(0, 1, 1000), tck)
+ scales_rm = sc[sc >= scales[1]]
+ statistic_rm = st[sc >= scales[1]]
+
+ min_idx = np.argmin(scales)
+ null = statistic[min_idx]
+ # fig_text += '\nnull lnZ = {0:.2f}'.format(null)
+
+ if args.stat_method is StatCateg.BAYESIAN:
+ reduced_ev = -(statistic_rm - null)
+ elif args.stat_method is StatCateg.FREQUENTIST:
+ reduced_ev = -2*(statistic_rm - null)
+
+ fig = plt.figure(figsize=(7, 5))
+ ax = fig.add_subplot(111)
+
+ xlims = SCALE_BOUNDARIES[args.dimension]
+ ax.set_xlim(xlims)
+ ax.set_xlabel(r'${\rm log}_{10}\left[\Lambda^{-1}_{'+ \
+ r'{0}'.format(args.dimension)+r'}'+ \
+ get_units(args.dimension)+r'\right]$', fontsize=16)
+
+ if args.stat_method is StatCateg.BAYESIAN:
+ ax.set_ylabel(r'$\text{Bayes\:Factor}\:\left[\text{ln}\left(B_{0/1}\right)\right]$')
+ elif args.stat_method is StatCateg.FREQUENTIST:
+ ax.set_ylabel(r'$-2\Delta {\rm LLH}$')
+
+ # ymin = np.round(np.min(reduced_ev) - 1.5)
+ # ymax = np.round(np.max(reduced_ev) + 1.5)
+ # ax.set_ylim((ymin, ymax))
+
+ ax.scatter(scales[1:], -(statistic[1:]-null), color='r')
+ ax.plot(scales_rm, reduced_ev, color='k', linewidth=1, alpha=1, ls='-')
+
+ ax.axhline(y=np.log(10**(BAYES_K)), color='red', alpha=1., linewidth=1.2, ls='--')
+ ax.axvline(x=lim, color='red', alpha=1., linewidth=1.2, ls='--')
+
+ at = AnchoredText(
+ fig_text, prop=dict(size=10), frameon=True, loc=4
+ )
+ at.patch.set_boxstyle("round,pad=0.1,rounding_size=0.5")
+ ax.add_artist(at)
+ make_dir(outfile)
+ for of in outformat:
+ print 'Saving as {0}'.format(outfile+'.'+of)
+ fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
+
+
+def plot_table_sens(data, outfile, outformat, args, show_lvatmo=True):
+ print 'Making TABLE sensitivity plot'
+ argsc = deepcopy(args)
+
+ dims = args.dimensions
+ srcs = args.source_ratios
+ if args.texture is Texture.NONE:
+ textures = [Texture.OET, Texture.OUT]
+ else:
+ textures = [args.texture]
+
+ if len(srcs) > 3:
+ raise NotImplementedError
+
+ xlims = (-60, -20)
+ ylims = (0.5, 1.5)
+
+ colour = {2:'red', 1:'blue', 0:'green'}
+ rgb_co = {2:[1,0,0], 1:[0,0,1], 0:[0.0, 0.5019607843137255, 0.0]}
+
+ fig = plt.figure(figsize=(8, 6))
+ gs = gridspec.GridSpec(len(dims), 1)
+ gs.update(hspace=0.15)
+
+ first_ax = None
+ legend_log = []
+ legend_elements = []
+
+ for idim, dim in enumerate(dims):
+ print '|||| DIM = {0}'.format(dim)
+ argsc.dimension = dim
+ gs0 = gridspec.GridSpecFromSubplotSpec(
+ len(textures), 1, subplot_spec=gs[idim], hspace=0
+ )
+
+ for itex, tex in enumerate(textures):
+ argsc.texture = tex
+ ylabel = texture_label(tex, dim)
+ # if angles == 2 and ian == 0: continue
+ ax = fig.add_subplot(gs0[itex])
+
+ if first_ax is None:
+ first_ax = ax
+
+ ax.set_xlim(xlims)
+ ax.set_ylim(ylims)
+ ax.set_yticks([], minor=True)
+ ax.set_yticks([1.], minor=False)
+ ax.set_yticklabels([ylabel], fontsize=13)
+ ax.yaxis.tick_right()
+ for xmaj in ax.xaxis.get_majorticklocs():
+ ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.2, linewidth=1)
+ ax.get_xaxis().set_visible(False)
+ if itex == len(textures) - 2:
+ ax.spines['bottom'].set_alpha(0.6)
+ elif itex == len(textures) - 1:
+ ax.text(
+ -0.04, 1.0, '$d = {0}$'.format(dim), fontsize=16,
+ rotation='90', verticalalignment='center',
+ transform=ax.transAxes
+ )
+ # dim_label_flag = False
+ ax.spines['top'].set_alpha(0.6)
+ ax.spines['bottom'].set_alpha(0.6)
+
+ for isrc, src in enumerate(srcs):
+ print '== src', src
+ argsc.source_ratio = src
+
+ if dim in PLANCK_SCALE.iterkeys():
+ ps = np.log10(PLANCK_SCALE[dim])
+ if ps < xlims[0]:
+ ax.annotate(
+ s='', xy=(xlims[0], 1), xytext=(xlims[0]+1, 1),
+ arrowprops={'arrowstyle': '->, head_length=0.2',
+ 'lw': 1, 'color':'purple'}
+ )
+ elif ps > xlims[1]:
+ ax.annotate(
+ s='', xy=(xlims[1]-1, 1), xytext=(xlims[1], 1),
+ arrowprops={'arrowstyle': '<-, head_length=0.2',
+ 'lw': 1, 'color':'purple'}
+ )
+ else:
+ ax.axvline(x=ps, color='purple', alpha=1., linewidth=1.5)
+
+ try:
+ scales, statistic = ma.compress_rows(data[idim][isrc][itex]).T
+ except: continue
+ lim = get_limit(deepcopy(scales), deepcopy(statistic), argsc, mask_initial=True)
+ if lim is None: continue
+
+ ax.axvline(x=lim, color=colour[isrc], alpha=1., linewidth=1.5)
+ ax.add_patch(patches.Rectangle(
+ (lim, ylims[0]), 100, np.diff(ylims), fill=True,
+ facecolor=colour[isrc], alpha=0.3, linewidth=0
+ ))
+
+ if isrc not in legend_log:
+ legend_log.append(isrc)
+ label = r'$\left('+r'{0}'.format(solve_ratio(src)).replace('_',':')+ \
+ r'\right)_{\text{S}}\:\text{at\:source}$'
+ legend_elements.append(
+ Patch(facecolor=rgb_co[isrc]+[0.3],
+ edgecolor=rgb_co[isrc]+[1], label=label)
+ )
+
+ if itex == len(textures)-1 and show_lvatmo:
+ LV_lim = np.log10(LV_ATMO_90PC_LIMITS[dim])
+ ax.add_patch(patches.Rectangle(
+ (LV_lim[1], ylims[0]), LV_lim[0]-LV_lim[1], np.diff(ylims),
+ fill=False, hatch='\\\\'
+ ))
+
+ ax.get_xaxis().set_visible(True)
+ ax.set_xlabel(r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} (\Lambda^{-1}_{d}\:/\:{\rm GeV}^{-d+4})\: ]$',
+ labelpad=5, fontsize=19)
+ ax.tick_params(axis='x', labelsize=16)
+
+ purple = [0.5019607843137255, 0.0, 0.5019607843137255]
+ if show_lvatmo:
+ legend_elements.append(
+ Patch(facecolor='none', hatch='\\\\', edgecolor='k', label='IceCube, Nature.Phy.14,961(2018)')
+ )
+ legend_elements.append(
+ Patch(facecolor=purple+[0.7], edgecolor=purple+[1], label='Planck Scale Expectation')
+ )
+ legend = first_ax.legend(
+ handles=legend_elements, prop=dict(size=11), loc='upper left',
+ title='Excluded regions', framealpha=1., edgecolor='black',
+ frameon=True
+ )
+ first_ax.set_zorder(10)
+ plt.setp(legend.get_title(), fontsize='11')
+ legend.get_frame().set_linestyle('-')
+
+ ybound = 0.595
+ if args.data is DataType.REAL:
+ # fig.text(0.295, 0.684, 'IceCube Preliminary', color='red', fontsize=13,
+ fig.text(0.278, ybound, r'\bf IceCube Preliminary', color='red', fontsize=13,
+ ha='center', va='center', zorder=11)
+ elif args.data is DataType.REALISATION:
+ fig.text(0.278, ybound-0.05, r'\bf IceCube Simulation', color='red', fontsize=13,
+ ha='center', va='center', zorder=11)
+ else:
+ fig.text(0.278, ybound, r'\bf IceCube Simulation', color='red', fontsize=13,
+ ha='center', va='center', zorder=11)
+
+ make_dir(outfile)
+ for of in outformat:
+ print 'Saving plot as {0}'.format(outfile+'.'+of)
+ fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
+
+
+def plot_x(data, outfile, outformat, args, normalise=False):
+ """Limit plot as a function of the source flavour ratio for each operator
+ texture."""
+ print 'Making X sensitivity plot'
+ dim = args.dimension
+ if dim < 5: normalise = False
+ srcs = args.source_ratios
+ x_arr = np.array([i[0] for i in srcs])
+ if args.texture is Texture.NONE:
+ textures = [Texture.OEU, Texture.OET, Texture.OUT]
+ else:
+ textures = [args.texture]
+
+ # Rearrange data structure
+ r_data = np.full((
+ data.shape[1], data.shape[0], data.shape[2], data.shape[3]
+ ), np.nan)
+
+ for isrc in xrange(data.shape[0]):
+ for itex in xrange(data.shape[1]):
+ r_data[itex][isrc] = data[isrc][itex]
+ r_data = ma.masked_invalid(r_data)
+ print r_data.shape, 'r_data.shape'
+
+ fig = plt.figure(figsize=(7, 6))
+ ax = fig.add_subplot(111)
+
+ ylims = SCALE_BOUNDARIES[dim]
+ if normalise:
+ if dim == 5: ylims = (-24, -8)
+ if dim == 6: ylims = (-12, 8)
+ if dim == 7: ylims = (0, 20)
+ if dim == 8: ylims = (12, 36)
+ else:
+ if dim == 3: ylims = (-28, -22)
+ if dim == 4: ylims = (-35, -26)
+ if dim == 5: SCALE_BOUNDARIES[5]
+ xlims = (0, 1)
+
+ colour = {0:'red', 2:'blue', 1:'green'}
+ rgb_co = {0:[1,0,0], 2:[0,0,1], 1:[0.0, 0.5019607843137255, 0.0]}
+
+ legend_log = []
+ legend_elements = []
+ labelsize = 13
+ largesize = 17
+
+ ax.set_xlim(xlims)
+ ax.set_ylim(ylims)
+ xticks = [0, 1/3., 0.5, 2/3., 1]
+ # xlabels = [r'$0$', r'$\frac{1}{3}$', r'$\frac{1}{2}$', r'$\frac{2}{3}$', r'$1$']
+ xlabels = [r'$0$', r'$1 / 3$', r'$1/2$', r'$2/3$', r'$1$']
+ ax.set_xticks([], minor=True)
+ ax.set_xticks(xticks, minor=False)
+ ax.set_xticklabels(xlabels, fontsize=largesize)
+ if dim != 4 or dim != 3:
+ yticks = range(ylims[0], ylims[1], 2) + [ylims[1]]
+ ax.set_yticks(yticks, minor=False)
+ if dim == 3 or dim == 4:
+ yticks = range(ylims[0], ylims[1], 1) + [ylims[1]]
+ ax.set_yticks(yticks, minor=False)
+ # for ymaj in ax.yaxis.get_majorticklocs():
+ # ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.2, linewidth=1)
+ for xmaj in xticks:
+ if xmaj == 1/3.:
+ ax.axvline(x=xmaj, ls='--', color='gray', alpha=0.5, linewidth=0.3)
+ # else:
+ # ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.2, linewidth=1)
+
+ ax.text(
+ (1/3.)+0.01, 0.01, r'$(0.33:0.66:0)_\text{S}$', fontsize=labelsize,
+ transform=ax.transAxes, rotation='vertical', va='bottom'
+ )
+ ax.text(
+ 0.96, 0.01, r'$(1:0:0)_\text{S}$', fontsize=labelsize,
+ transform=ax.transAxes, rotation='vertical', va='bottom', ha='left'
+ )
+ ax.text(
+ 0.01, 0.01, r'$(0:1:0)_\text{S}$', fontsize=labelsize,
+ transform=ax.transAxes, rotation='vertical', va='bottom'
+ )
+ yl = 0.55
+ if dim == 3: yl = 0.65
+ ax.text(
+ 0.03, yl, r'${\rm \bf Excluded}$', fontsize=largesize,
+ transform=ax.transAxes, color = 'g', rotation='vertical', zorder=10
+ )
+ ax.text(
+ 0.95, 0.55, r'${\rm \bf Excluded}$', fontsize=largesize,
+ transform=ax.transAxes, color = 'b', rotation='vertical', zorder=10
+ )
+
+ for itex, tex in enumerate(textures):
+ print '|||| TEX = {0}'.format(tex)
+ lims = np.full(len(srcs), np.nan)
+
+ for isrc, src in enumerate(srcs):
+ x = src[0]
+ print '|||| X = {0}'.format(x)
+ args.source_ratio = src
+ d = r_data[itex][isrc]
+ if np.sum(d.mask) > 2: continue
+ scales, statistic = ma.compress_rows(d).T
+ lim = get_limit(deepcopy(scales), deepcopy(statistic), args, mask_initial=True)
+ if lim is None: continue
+ if normalise:
+ lim -= np.log10(PLANCK_SCALE[dim])
+ lims[isrc] = lim
+
+ lims = ma.masked_invalid(lims)
+ size = np.sum(~lims.mask)
+ if size == 0: continue
+
+ print 'x_arr, lims', zip(x_arr, lims)
+ if normalise:
+ zeropoint = 100
+ else:
+ zeropoint = 0
+ lims[lims.mask] = zeropoint
+
+ l0 = np.argwhere(lims == zeropoint)[0]
+ h0 = len(lims) - np.argwhere(np.flip(lims, 0) == zeropoint)[0]
+ lims[int(l0):int(h0)] = zeropoint
+
+ x_arr_a = [x_arr[0]-0.1] + list(x_arr)
+ x_arr_a = list(x_arr_a) + [x_arr_a[-1]+0.1]
+ lims = [lims[0]] + list(lims)
+ lims = list(lims) + [lims[-1]]
+
+ s = 0.2
+ g = 2
+ if dim == 3 and tex == Texture.OUT:
+ s = 0.4
+ g = 4
+ if dim in (4,5) and tex == Texture.OUT:
+ s = 0.5
+ g = 5
+ if dim == 7 and tex == Texture.OET:
+ s = 1.6
+ g = 2
+ if dim == 7 and tex == Texture.OUT:
+ s = 2.0
+ g = 20
+ if dim == 8 and tex == Texture.OET:
+ s = 0.8
+ g = 6
+ if dim == 8 and tex == Texture.OUT:
+ s = 1.7
+ g = 8
+
+ # ax.scatter(x_arr_a, lims, color='black', s=1)
+ tck, u = splprep([x_arr_a, lims], s=0, k=1)
+ x, y = splev(np.linspace(0, 1, 200), tck)
+ tck, u = splprep([x, y], s=s)
+ x, y = splev(np.linspace(0, 1, 400), tck)
+ y = gaussian_filter(y, sigma=g)
+ ax.fill_between(x, y, zeropoint, color=rgb_co[itex]+[0.3])
+ # ax.scatter(x, y, color='black', s=1)
+ # ax.scatter(x_arr_a, lims, color=rgb_co[itex], s=8)
+
+ if itex not in legend_log:
+ legend_log.append(itex)
+ # label = texture_label(tex, dim)[:-1] + r'\:{\rm\:texture}$'
+ label = texture_label(tex, dim)[:-1] + r'\:({\rm this\:work})$'
+ legend_elements.append(
+ Patch(facecolor=rgb_co[itex]+[0.3],
+ edgecolor=rgb_co[itex]+[1], label=label)
+ )
+
+ LV_lim = np.log10(LV_ATMO_90PC_LIMITS[dim])
+ if normalise:
+ LV_lim -= np.log10(PLANCK_SCALE[dim])
+ ax.add_patch(patches.Rectangle(
+ (xlims[0], LV_lim[1]), np.diff(xlims), LV_lim[0]-LV_lim[1],
+ fill=False, hatch='\\\\'
+ ))
+
+ if dim in PLANCK_SCALE:
+ ps = np.log10(PLANCK_SCALE[dim])
+ if normalise and dim == 6:
+ ps -= np.log10(PLANCK_SCALE[dim])
+ ax.add_patch(Arrow(
+ 0.24, -0.009, 0, -5, width=0.12, capstyle='butt',
+ facecolor='purple', fill=True, alpha=0.8,
+ edgecolor='darkmagenta'
+ ))
+ ax.add_patch(Arrow(
+ 0.78, -0.009, 0, -5, width=0.12, capstyle='butt',
+ facecolor='purple', fill=True, alpha=0.8,
+ edgecolor='darkmagenta'
+ ))
+
+ ax.text(
+ 0.26, 0.5, r'${\rm \bf Quantum\:Gravity\:Frontier}$',
+ fontsize=largesize-2, transform=ax.transAxes, va='top',
+ ha='left', color='purple'
+ )
+ if dim > 5:
+ ax.axhline(y=ps, color='purple', alpha=1., linewidth=1.5)
+
+ cpt = r'c' if dim % 2 == 0 else r'a'
+ if normalise:
+ ft = r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} \left (\mathring{'+cpt+r'}^{(' + \
+ r'{0}'.format(args.dimension)+r')}\cdot{\rm E}_{\:\rm P}'
+ if dim > 5: ft += r'^{\:'+ r'{0}'.format(args.dimension-4)+ r'}'
+ ft += r'\right )\: ]$'
+ fig.text(
+ 0.01, 0.5, ft, ha='left',
+ va='center', rotation='vertical', fontsize=largesize
+ )
+ else:
+ fig.text(
+ 0.01, 0.5,
+ r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} \left (\mathring{'+cpt+r'}^{(' +
+ r'{0}'.format(args.dimension)+r')}\:' + get_units(args.dimension) +
+ r'\right )\: ]$', ha='left',
+ va='center', rotation='vertical', fontsize=largesize
+ )
+
+ ax.set_xlabel(
+ r'${\rm Source\:Composition}\:[\:\left (\:x:1-x:0\:\right )_\text{S}\:]$',
+ labelpad=10, fontsize=largesize
+ )
+ ax.tick_params(axis='x', labelsize=largesize-1)
+
+ purple = [0.5019607843137255, 0.0, 0.5019607843137255]
+ # legend_elements.append(
+ # Patch(facecolor=purple+[0.7], edgecolor=purple+[1], label='Planck Scale Expectation')
+ # )
+ legend_elements.append(
+ Patch(facecolor='none', hatch='\\\\', edgecolor='k', label='IceCube [TODO]')
+ )
+ legend = ax.legend(
+ handles=legend_elements, prop=dict(size=labelsize-2),
+ loc='upper center', title='Excluded regions', framealpha=1.,
+ edgecolor='black', frameon=True, bbox_to_anchor=(0.5, 1)
+ )
+ plt.setp(legend.get_title(), fontsize=labelsize)
+ legend.get_frame().set_linestyle('-')
+
+ # ybound = 0.14
+ # if args.data is DataType.REAL:
+ # fig.text(0.7, ybound, r'\bf IceCube Preliminary', color='red', fontsize=13,
+ # ha='center', va='center', zorder=11)
+ # elif args.data is DataType.REALISATION:
+ # fig.text(0.7, ybound-0.05, r'\bf IceCube Simulation', color='red', fontsize=13,
+ # ha='center', va='center', zorder=11)
+ # else:
+ # fig.text(0.7, ybound, r'\bf IceCube Simulation', color='red', fontsize=13,
+ # ha='center', va='center', zorder=11)
+
+ make_dir(outfile)
+ for of in outformat:
+ print 'Saving plot as {0}'.format(outfile + '.' + of)
+ fig.savefig(outfile + '.' + of, bbox_inches='tight', dpi=150)