aboutsummaryrefslogtreecommitdiffstats
path: root/mc_texture.py
diff options
context:
space:
mode:
Diffstat (limited to 'mc_texture.py')
-rw-r--r--mc_texture.py233
1 files changed, 0 insertions, 233 deletions
diff --git a/mc_texture.py b/mc_texture.py
deleted file mode 100644
index b61855e..0000000
--- a/mc_texture.py
+++ /dev/null
@@ -1,233 +0,0 @@
-#! /usr/bin/env python
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : April 25, 2019
-
-"""
-Sample points for a specific scenario
-"""
-
-from __future__ import absolute_import, division
-
-import argparse
-from copy import deepcopy
-from functools import partial
-
-import numpy as np
-
-from utils import fr as fr_utils
-from utils import llh as llh_utils
-from utils import mcmc as mcmc_utils
-from utils import misc as misc_utils
-from utils import plot as plot_utils
-from utils.enums import MCMCSeedType, ParamTag, PriorsCateg, Texture
-from utils.param import Param, ParamSet
-
-
-def define_nuisance():
- """Define the nuisance parameters."""
- tag = ParamTag.SM_ANGLES
- nuisance = []
- g_prior = PriorsCateg.GAUSSIAN
- lg_prior = PriorsCateg.LIMITEDGAUSS
- e = 1e-9
- nuisance.extend([
- Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
- Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
- Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
- Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
- Param(
- name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
- std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
- ),
- Param(
- name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
- std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
- )
- ])
- return ParamSet(nuisance)
-
-
-def get_paramsets(args, nuisance_paramset):
- """Make the paramsets for generating the Asmimov MC sample and also running
- the MCMC.
- """
- asimov_paramset = []
- llh_paramset = []
-
- llh_paramset.extend(
- [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
- )
-
- for parm in llh_paramset:
- parm.value = args.__getattribute__(parm.name)
-
- boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
- tag = ParamTag.SCALE
- llh_paramset.append(
- Param(
- name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
- tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
- misc_utils.get_units(args.dimension)+r'\right )',
- tag=tag
- )
- )
- llh_paramset = ParamSet(llh_paramset)
-
- tag = ParamTag.BESTFIT
- flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
- asimov_paramset.extend([
- Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
- Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
- ])
- asimov_paramset = ParamSet(asimov_paramset)
-
- return asimov_paramset, llh_paramset
-
-
-def nuisance_argparse(parser):
- nuisance = define_nuisance()
- for parm in nuisance:
- parser.add_argument(
- '--'+parm.name, type=float, default=parm.value,
- help=parm.name+' to inject'
- )
-
-
-def process_args(args):
- """Process the input args."""
- if args.texture is Texture.NONE:
- raise ValueError('Must assume a BSM texture')
- args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
-
- args.binning = np.logspace(
- np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
- )
-
-
-def parse_args(args=None):
- """Parse command line arguments"""
- parser = argparse.ArgumentParser(
- description="BSM flavour ratio analysis",
- formatter_class=misc_utils.SortingHelpFormatter,
- )
- parser.add_argument(
- '--seed', type=misc_utils.seed_parse, default='25',
- help='Set the random seed value'
- )
- parser.add_argument(
- '--threads', type=misc_utils.thread_type, default='1',
- help='Set the number of threads to use (int or "max")'
- )
- parser.add_argument(
- '--spectral-index', type=float, default='-2',
- help='Astro spectral index'
- )
- parser.add_argument(
- '--datadir', type=str, default='./untitled',
- help='Path to store chains'
- )
- fr_utils.fr_argparse(parser)
- mcmc_utils.mcmc_argparse(parser)
- nuisance_argparse(parser)
- misc_utils.remove_option(parser, 'injected_ratio')
- misc_utils.remove_option(parser, 'plot_angles')
- misc_utils.remove_option(parser, 'plot_elements')
- if args is None: return parser.parse_args()
- else: return parser.parse_args(args.split())
-
-
-def gen_identifier(args):
- f = '_DIM{0}'.format(args.dimension)
- f += '_SRC_' + misc_utils.solve_ratio(args.source_ratio)
- f += '_{0}'.format(misc_utils.str_enum(args.texture))
- return f
-
-
-def triangle_llh(theta, args, llh_paramset):
- """Log likelihood function for a given theta."""
- if len(theta) != len(llh_paramset):
- raise AssertionError(
- 'Dimensions of scan is not the same as the input '
- 'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
- )
- for idx, param in enumerate(llh_paramset):
- param.value = theta[idx]
-
- return 1. # Flat LLH
-
-
-def ln_prob(theta, args, llh_paramset):
- dc_llh_paramset = deepcopy(llh_paramset)
- lp = llh_utils.lnprior(theta, paramset=dc_llh_paramset)
- if not np.isfinite(lp):
- return -np.inf
- return lp + triangle_llh(
- theta,
- args = args,
- llh_paramset = dc_llh_paramset,
- )
-
-
-def main():
- args = parse_args()
- process_args(args)
- misc_utils.print_args(args)
-
- if args.seed is not None:
- np.random.seed(args.seed)
-
- asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
-
- prefix = ''
- outfile = args.datadir + '/mc_texture' + prefix + gen_identifier(args)
- print '== {0:<25} = {1}'.format('outfile', outfile)
-
- print 'asimov_paramset', asimov_paramset
- print 'llh_paramset', llh_paramset
-
- if args.run_mcmc:
- ln_prob_eval = partial(
- ln_prob,
- llh_paramset = llh_paramset,
- args = args,
- )
-
- if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
- p0 = mcmc_utils.flat_seed(
- llh_paramset, nwalkers=args.nwalkers
- )
- elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
- p0 = mcmc_utils.gaussian_seed(
- llh_paramset, nwalkers=args.nwalkers
- )
-
- samples = mcmc_utils.mcmc(
- p0 = p0,
- ln_prob = ln_prob_eval,
- ndim = len(llh_paramset),
- nwalkers = args.nwalkers,
- burnin = args.burnin,
- nsteps = args.nsteps,
- args = args,
- threads = args.threads
- )
-
- frs = np.array(
- map(lambda x: fr_utils.flux_averaged_BSMu(
- x, args, args.spectral_index, llh_paramset
- ), samples),
- dtype=float
- )
- frs_scale = np.vstack((frs.T, samples[:-1].T)).T
- mcmc_utils.save_chains(frs_scale, outfile)
-
- print "DONE!"
-
-
-main.__doc__ = __doc__
-
-
-if __name__ == '__main__':
- main()