aboutsummaryrefslogtreecommitdiffstats
path: root/plot_llh/unitarity_contour.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'plot_llh/unitarity_contour.ipynb')
-rw-r--r--plot_llh/unitarity_contour.ipynb145
1 files changed, 0 insertions, 145 deletions
diff --git a/plot_llh/unitarity_contour.ipynb b/plot_llh/unitarity_contour.ipynb
deleted file mode 100644
index a5bace1..0000000
--- a/plot_llh/unitarity_contour.ipynb
+++ /dev/null
@@ -1,145 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "ename": "ImportError",
- "evalue": "No module named healpy",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m<ipython-input-1-bf42c11c505a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mhealpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mH\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpylab\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mImportError\u001b[0m: No module named healpy"
- ]
- }
- ],
- "source": [
- "import healpy as H\n",
- "import sys\n",
- "import numpy as np\n",
- "from pylab import *\n",
- "import matplotlib.pyplot as plt\n",
- "import matplotlib.colors as clrs\n",
- "import subprocess\n",
- "import pickle\n",
- "import matplotlib.tri as mtri\n",
- "import matplotlib.lines as lines\n",
- "import ternary\n",
- "\n",
- "rc('text', usetex=True)\n",
- "rc('font',**{'family':'serif','serif':['Palatino']})"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "#### Boundary and Gridlines\n",
- "scale = 20\n",
- "figure, tax = ternary.figure(scale=scale)\n",
- "figure.set_size_inches(6, 5.6)\n",
- "figure.set_dpi(300)\n",
- "\n",
- "plt.axis('off')\n",
- "\n",
- "tax.gridlines(color=\"gray\", multiple=0.1 * scale, linewidth=0.35, ls='-', alpha=0.5)\n",
- "\n",
- "# Set Axis labels and Title\n",
- "fontsize = 7.25\n",
- "tax.left_axis_label(r'$f_{\\tau,\\oplus}$', fontsize=fontsize, offset=0.175)\n",
- "tax.right_axis_label(r'$f_{\\mu,\\oplus}$', fontsize=fontsize, offset=0.175)\n",
- "tax.bottom_axis_label(r'$f_{e,\\oplus}$', fontsize=fontsize, offset=0.175)\n",
- "\n",
- "tax.boundary(linewidth=1.0)\n",
- "\n",
- "fe = 3.0/3.\n",
- "fmu = 0.0/3.\n",
- "A4 = []\n",
- "\n",
- "steps = 360\n",
- "for chi in arange(0.0,2*np.pi,2*np.pi/(1.*steps)) :\n",
- " \n",
- " L = []\n",
- " \n",
- " for dchi in arange(-np.pi/2.+2.*np.pi/(1.*steps),np.pi/2.,2.*np.pi/(1.*steps)) :\n",
- " omega = chi+dchi\n",
- " x = (1.-fe-2.*fmu)*np.sin(omega)\n",
- " y = (1.-2.*fe-fmu)*np.cos(omega)\n",
- " z = (fmu-fe)*(np.cos(omega)-np.sin(omega))\n",
- " \n",
- " B = [0.0,(x+y+z)/3.,x/2.,y/2.,z/2.]\n",
- " \n",
- " if x**2 >= (y-z)**2/9. :\n",
- " B.append(((3.*x+y+z)**2-4.*y*z)/24./x)\n",
- " if y**2 >= (z-x)**2/9. :\n",
- " B.append(((3.*y+z+x)**2-4.*z*x)/24./y)\n",
- " if z**2 >= (x-y)**2/9. :\n",
- " B.append(((3.*z+x+y)**2-4.*x*y)/24./z)\n",
- "\n",
- " L.append(max(B)/np.cos(dchi))\n",
- " \n",
- " A4.append([fe+np.cos(chi)*min(L),fmu+np.sin(chi)*min(L)])\n",
- " \n",
- "A4 = np.array(A4) \n",
- "tax.plot(A4*scale, linewidth=1, marker=None, color='red', linestyle='solid')\n",
- "\n",
- "r = plt.plot(np.array([[-1000, -1000], [-1000, -1000]]) * scale, linewidth=4., marker=None, color = 'red', label='$(1:0:0)_s$')\n",
- "g = plt.plot(np.array([[-1000, -1000], [-1000, -1000]]) * scale, linewidth=4., marker=None, color = 'green', label='$(0:1:0)_s$')\n",
- "b = plt.plot(np.array([[-1000, -1000], [-1000, -1000]]) * scale, linewidth=4., marker=None, color = 'blue', label='$(1:2:0)_s$')\n",
- "\n",
- "black = plt.plot(np.array([[-1000, 0], [-1000, 0]]) * scale, linewidth=1., marker=None, color='black', label='This work')\n",
- "dotted = plt.plot(np.array([[-1000, 0], [-1000, 0]]) * scale, linewidth=0.4, marker=None, color='black', linestyle='dashed', label='Xu+, 2014')\n",
- "\n",
- "handles1 = [black[0], dotted[0]]\n",
- "handles2 = [r[0], g[0], b[0]]\n",
- "\n",
- "tax.clear_matplotlib_ticks() # Remove default Matplotlib Axes\n",
- "\n",
- "tax.set_axis_limits({'b': [0., 1.], 'l': [0., 1.], 'r': [0., 1.]})\n",
- "\n",
- "tax.get_ticks_from_axis_limits(multiple=10.)\n",
- "tax.set_custom_ticks(fontsize=3.5, multiple=10., offset=0.022, linewidth=0.5, tick_formats= {'b': \"%.1f\", 'l': \"%.1f\", 'r': \"%.1f\"})\n",
- "\n",
- "first_legend = plt.legend(handles=handles2, bbox_to_anchor=(0.75, 0.85), loc='center left', borderaxespad=0.,fancybox=True,framealpha=0.0,frameon=True,numpoints=1, scatterpoints = 1,handlelength=0.6, fontsize=4.5)\n",
- "tax.ax.set_aspect('equal')\n",
- "\n",
- "ax = plt.gca().add_artist(first_legend)\n",
- "\n",
- "tax.legend(handles=handles1, bbox_to_anchor=(0, 0.90), loc='center left', borderaxespad=0.,fancybox=True,framealpha=0.0,frameon=True,numpoints=1, scatterpoints = 1,handlelength=0.6, fontsize=4.5)\n",
- "tax.ax.set_aspect('equal')\n",
- "\n",
- "#ternary.plt.tight_layout()\n",
- "tax._redraw_labels()\n",
- "\n",
- "ternary.plt.show()"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.15"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}