aboutsummaryrefslogtreecommitdiffstats
path: root/plot_sens_sourcescan.py
diff options
context:
space:
mode:
Diffstat (limited to 'plot_sens_sourcescan.py')
-rwxr-xr-xplot_sens_sourcescan.py411
1 files changed, 0 insertions, 411 deletions
diff --git a/plot_sens_sourcescan.py b/plot_sens_sourcescan.py
deleted file mode 100755
index 130817d..0000000
--- a/plot_sens_sourcescan.py
+++ /dev/null
@@ -1,411 +0,0 @@
-#! /usr/bin/env python
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : April 28, 2018
-
-"""
-HESE BSM flavour ratio analysis plotting script
-"""
-
-from __future__ import absolute_import, division
-
-import os
-import argparse
-from functools import partial
-from copy import deepcopy
-
-import numpy as np
-import numpy.ma as ma
-
-from utils import fr as fr_utils
-from utils import gf as gf_utils
-from utils import llh as llh_utils
-from utils import misc as misc_utils
-from utils import plot as plot_utils
-from utils.enums import EnergyDependance, Likelihood, MixingScenario, ParamTag
-from utils.enums import PriorsCateg, SensitivityCateg, StatCateg
-from utils.param import Param, ParamSet, get_paramsets
-
-from utils import mn as mn_utils
-
-
-def define_nuisance():
- """Define the nuisance parameters."""
- tag = ParamTag.SM_ANGLES
- g_prior = PriorsCateg.GAUSSIAN
- lg_prior = PriorsCateg.LIMITEDGAUSS
- e = 1e-9
- nuisance = [
- Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
- Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
- Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
- Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
- Param(
- name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
- std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
- ),
- Param(
- name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
- std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
- )
- ]
- tag = ParamTag.NUISANCE
- nuisance.extend([
- Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
- Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
- Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
- Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag),
- Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
- ])
- return ParamSet(nuisance)
-
-
-def nuisance_argparse(parser):
- nuisance = define_nuisance()
- for parm in nuisance:
- parser.add_argument(
- '--'+parm.name, type=float, default=parm.value,
- help=parm.name+' to inject'
- )
-
-
-def process_args(args):
- """Process the input args."""
- if args.fix_mixing is not MixingScenario.NONE and args.fix_scale:
- raise NotImplementedError('Fixed mixing and scale not implemented')
- if args.fix_mixing is not MixingScenario.NONE and args.fix_mixing_almost:
- raise NotImplementedError(
- '--fix-mixing and --fix-mixing-almost cannot be used together'
- )
- if args.fix_scale:
- raise NotImplementedError(
- '--fix-scale not implemented'
- )
-
- args.measured_ratio = fr_utils.normalise_fr(args.measured_ratio)
- # if args.fix_source_ratio:
- # assert len(args.source_ratios) % 3 == 0
- # srs = [args.source_ratios[3*x:3*x+3]
- # for x in range(int(len(args.source_ratios)/3))]
- # args.source_ratios = map(fr_utils.normalise_fr, srs)
-
- if args.energy_dependance is EnergyDependance.SPECTRAL:
- args.binning = np.logspace(
- np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
- )
-
- if args.split_jobs and args.run_method is SensitivityCateg.FULL:
- raise NotImplementedError(
- 'split_jobs and run_method not implemented'
- )
-
- args.dimensions = np.sort(args.dimensions)
-
- args_copy = deepcopy(args)
- scale_regions = []
- for dim in args.dimensions:
- args_copy.dimension = dim
- _, scale_region = fr_utils.estimate_scale(args_copy)
- scale_regions.append(scale_region)
- args.scale_region = [np.min(scale_regions), np.max(scale_regions)]
- args.scale = np.power(10., np.average(np.log10(args.scale_region)))
-
-
-def parse_args(args=None):
- """Parse command line arguments"""
- parser = argparse.ArgumentParser(
- description="HESE BSM flavour ratio analysis plotting script",
- formatter_class=misc_utils.SortingHelpFormatter,
- )
- parser.add_argument(
- '--infile', type=str, default='./untitled',
- help='Path to input dir'
- )
- parser.add_argument(
- '--run-method', default='full',
- type=partial(misc_utils.enum_parse, c=SensitivityCateg),
- choices=SensitivityCateg,
- help='Choose which type of sensivity plot to make'
- )
- parser.add_argument(
- '--stat-method', default='bayesian',
- type=partial(misc_utils.enum_parse, c=StatCateg), choices=StatCateg,
- help='Statistical method to employ'
- )
- parser.add_argument(
- '--sens-bins', type=int, default=10,
- help='Number of bins for the Bayes factor plot'
- )
- parser.add_argument(
- '--split-jobs', type=misc_utils.parse_bool, default='False',
- help='Did the jobs get split'
- )
- parser.add_argument(
- '--plot', type=misc_utils.parse_bool, default='True',
- help='Make sensitivity plots'
- )
- parser.add_argument(
- '--plot-statistic', type=misc_utils.parse_bool, default='False',
- help='Plot MultiNest evidence or LLH value'
- )
- fr_utils.fr_argparse(parser)
- gf_utils.gf_argparse(parser)
- llh_utils.likelihood_argparse(parser)
- mn_utils.mn_argparse(parser)
- nuisance_argparse(parser)
- misc_utils.remove_option(parser, 'dimension')
- misc_utils.remove_option(parser, 'source_ratio')
- misc_utils.remove_option(parser, 'scale')
- misc_utils.remove_option(parser, 'scale_region')
- parser.add_argument(
- '--dimensions', type=int, nargs='*', default=[3, 6],
- help='Set the new physics dimensions to consider'
- )
- parser.add_argument(
- '--source-bins', type=int, default=5,
- help='Binning in source flavour space'
- )
- if args is None: return parser.parse_args()
- else: return parser.parse_args(args.split())
-
-
-def main():
- args = parse_args()
- process_args(args)
- args.scale = 0
- misc_utils.print_args(args)
-
- asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
-
- scale = llh_paramset.from_tag(ParamTag.SCALE)[0]
- mmangles = llh_paramset.from_tag(ParamTag.MMANGLES)
- if args.run_method is SensitivityCateg.FULL:
- st_paramset_arr = [llh_paramset.from_tag(ParamTag.SCALE, invert=True)]
- elif args.run_method in [SensitivityCateg.FIXED_ANGLE, SensitivityCateg.CORR_ANGLE]:
- nscale_pmset = llh_paramset.from_tag([ParamTag.SCALE, ParamTag.MMANGLES], invert=True)
- st_paramset_arr = [nscale_pmset] * 3
- elif args.run_method in [SensitivityCateg.FIXED_ONE_ANGLE, SensitivityCateg.CORR_ONE_ANGLE]:
- nscale_pmset = llh_paramset.from_tag(ParamTag.SCALE, invert=True)
- st_paramset_arr = []
- for x in xrange(3):
- st_paramset_arr.append(
- ParamSet([prms for prms in nscale_pmset
- if mmangles[x].name != prms.name])
- )
-
- corr_angles_categ = [SensitivityCateg.CORR_ANGLE, SensitivityCateg.CORR_ONE_ANGLE]
- fixed_angle_categ = [SensitivityCateg.FIXED_ANGLE, SensitivityCateg.FIXED_ONE_ANGLE]
-
- if args.run_method in corr_angles_categ:
- scan_angles = np.linspace(0+1e-9, 1-1e-9, args.sens_bins)
- else: scan_angles = np.array([0])
- print 'scan_angles', scan_angles
-
- dims = len(args.dimensions)
- binning = np.linspace(0, 1, args.source_bins)
- grid = np.dstack(np.meshgrid(binning, binning)).reshape(
- args.source_bins*args.source_bins, 2
- )
- source_ratios = []
- for x in grid:
- if x[0]+x[1] > 1:
- continue
- source_ratios.append([x[0], x[1], 1-x[0]-x[1]])
- args.source_ratios = source_ratios
- n_source_ratios = map(fr_utils.normalise_fr, source_ratios)
-
- srcs = len(n_source_ratios)
- if args.run_method is SensitivityCateg.FULL:
- statistic_arr = np.full((dims, srcs, args.sens_bins, 2), np.nan)
- elif args.run_method in fixed_angle_categ:
- statistic_arr = np.full((dims, srcs, len(st_paramset_arr), args.sens_bins, 2), np.nan)
- elif args.run_method in corr_angles_categ:
- statistic_arr = np.full(
- (dims, srcs, len(st_paramset_arr), args.sens_bins, args.sens_bins, 3), np.nan
- )
-
- print 'Loading data'
- for idim, dim in enumerate(args.dimensions):
- argsc = deepcopy(args)
- argsc.dimension = dim
- _, scale_region = fr_utils.estimate_scale(argsc)
- argsc.scale_region = scale_region
- scan_scales = np.linspace(
- np.log10(scale_region[0]), np.log10(scale_region[1]), args.sens_bins
- )
- scan_scales = np.concatenate([[-100.], scan_scales])
-
- for isrc, src in enumerate(n_source_ratios):
- argsc.source_ratio = src
- infile = args.infile
- if args.likelihood is Likelihood.GOLEMFIT:
- infile += '/golemfit/'
- elif args.likelihood is Likelihood.GAUSSIAN:
- infile += '/gaussian/'
- if args.likelihood is Likelihood.GAUSSIAN:
- infile += '{0}/'.format(str(args.sigma_ratio).replace('.', '_'))
- # infile += '/DIM{0}/fix_ifr/{1}/{2}/{3}/fr_stat'.format(
- infile += '/DIM{0}/fix_ifr/sourcescan/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/prior/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/{1}/{2}/{3}/old/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/seed2/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/100TeV/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/strictprior/{1}/{2}/{3}/fr_stat'.format(
- # infile += '/DIM{0}/fix_ifr/noprior/{1}/{2}/{3}/fr_stat'.format(
- dim, *map(misc_utils.parse_enum, [args.stat_method, args.run_method, args.data])
- ) + misc_utils.gen_identifier(argsc)
- print '== {0:<25} = {1}'.format('infile', infile)
-
- if args.split_jobs:
- for idx_an, an in enumerate(scan_angles):
- for idx_sc, sc in enumerate(scan_scales):
- filename = infile + '_scale_{0:.0E}'.format(np.power(10, sc))
- try:
- if args.run_method in fixed_angle_categ:
- print 'Loading from {0}'.format(filename+'.npy')
- statistic_arr[idim][isrc][:,idx_sc] = np.load(filename+'.npy')[:,0]
- if args.run_method in corr_angles_categ:
- filename += '_angle_{0:<04.2}'.format(an)
- print 'Loading from {0}'.format(filename+'.npy')
- statistic_arr[idim][isrc][:,idx_an,idx_sc] = np.load(filename+'.npy')[:,0,0]
- except:
- print 'Unable to load file {0}'.format(filename+'.npy')
- continue
- else:
- print 'Loading from {0}'.format(infile+'.npy')
- try:
- statistic_arr[idim][isrc] = np.load(infile+'.npy')
- except:
- print 'Unable to load file {0}'.format(infile+'.npy')
- continue
-
- data = ma.masked_invalid(statistic_arr)
-
- print 'data', data
- print 'data.shape', data.shape
- if args.plot_statistic:
- assert 0
- print 'Plotting statistic'
-
- argsc = deepcopy(args)
- for idim, dim in enumerate(args.dimensions):
- argsc.dimension = dim
- _, scale_region = fr_utils.estimate_scale(argsc)
- argsc.scale_region = scale_region
- base_infile = args.infile
- if args.likelihood is Likelihood.GOLEMFIT:
- base_infile += '/golemfit/'
- elif args.likelihood is Likelihood.GAUSSIAN:
- base_infile += '/gaussian/'
- if args.likelihood is Likelihood.GAUSSIAN:
- base_infile += '{0}/'.format(str(args.sigma_ratio).replace('.', '_'))
- # base_infile += '/DIM{0}/fix_ifr'.format(dim)
- base_infile += '/DIM{0}/fix_ifr/sourcescan'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/prior'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/seed2'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/100TeV'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/strictprior'.format(dim)
- # base_infile += '/DIM{0}/fix_ifr/noprior'.format(dim)
-
- for isrc, src in enumerate(n_source_ratios):
- argsc.source_ratio = src
- infile = base_infile +'/{0}/{1}/{2}/fr_stat'.format(
- # infile = base_infile +'/{0}/{1}/{2}/old/fr_stat'.format(
- *map(misc_utils.parse_enum, [args.stat_method, args.run_method, args.data])
- ) + misc_utils.gen_identifier(argsc)
- basename = os.path.dirname(infile)
- baseoutfile = basename[:5]+basename[5:].replace('data', 'plots')
- baseoutfile += '/' + os.path.basename(infile)
- if args.run_method is SensitivityCateg.FULL:
- outfile = baseoutfile
- plot_utils.plot_statistic(
- data = data[idim][isrc],
- outfile = outfile,
- outformat = ['png'],
- args = argsc,
- scale_param = scale,
- )
- if args.run_method in fixed_angle_categ:
- for idx_scen in xrange(len(st_paramset_arr)):
- print '|||| SCENARIO = {0}'.format(idx_scen)
- outfile = baseoutfile + '_SCEN{0}'.format(idx_scen)
- if idx_scen == 0: label = r'$\mathcal{O}_{12}=\pi/4$'
- elif idx_scen == 1: label = r'$\mathcal{O}_{13}=\pi/4$'
- elif idx_scen == 2: label = r'$\mathcal{O}_{23}=\pi/4$'
- plot_utils.plot_statistic(
- data = data[idim][isrc][idx_scen],
- outfile = outfile,
- outformat = ['png'],
- args = argsc,
- scale_param = scale,
- label = label
- )
- elif args.run_method in corr_angles_categ:
- for idx_scen in xrange(len(st_paramset_arr)):
- print '|||| SCENARIO = {0}'.format(idx_scen)
- basescenoutfile = baseoutfile + '_SCEN{0}'.format(idx_scen)
- if idx_scen == 0: label = r'$\mathcal{O}_{12}='
- elif idx_scen == 1: label = r'$\mathcal{O}_{13}='
- elif idx_scen == 2: label = r'$\mathcal{O}_{23}='
- for idx_an, an in enumerate(scan_angles):
- print '|||| ANGLE = {0:<04.2}'.format(float(an))
- outfile = basescenoutfile + '_ANGLE{0}'.format(idx_an)
- _label = label + r'{0:<04.2}$'.format(an)
- plot_utils.plot_statistic(
- data = data[idim][isrc][idx_scen][idx_an][:,1:],
- outfile = outfile,
- outformat = ['png'],
- args = argsc,
- scale_param = scale,
- label = _label
- )
-
- if args.plot:
- print 'Plotting sensitivities'
-
- basename = args.infile[:5]+args.infile[5:].replace('data', 'plots')
- baseoutfile = basename + '/{0}/{1}/{2}/'.format(
- *map(misc_utils.parse_enum, [args.likelihood, args.stat_method, args.data])
- )
-
- if args.run_method is SensitivityCateg.FULL:
- plot_utils.plot_sens_full(
- data = data,
- outfile = baseoutfile + '/FULL',
- outformat = ['png', 'pdf'],
- args = args,
- )
- elif args.run_method in fixed_angle_categ:
- # plot_utils.plot_sens_fixed_angle_pretty(
- # data = data,
- # outfile = baseoutfile + '/fixed_angle_pretty_substantial',
- # outformat = ['png', 'pdf'],
- # args = args,
- # )
- # plot_utils.plot_sens_fixed_angle(
- # data = data,
- # outfile = baseoutfile + '/FIXED_ANGLE',
- # outformat = ['png'],
- # args = args,
- # )
- plot_utils.plot_source_ternary_1D(
- data = data,
- outfile = baseoutfile + '/source_ternary',
- outformat = ['png'],
- args = args,
- )
- elif args.run_method in corr_angles_categ:
- plot_utils.plot_sens_corr_angle(
- data = data,
- outfile = baseoutfile + '/CORR_ANGLE',
- outformat = ['png', 'pdf'],
- args = args,
- )
-
-
-main.__doc__ = __doc__
-
-
-if __name__ == '__main__':
- main()