aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/fr.py
diff options
context:
space:
mode:
Diffstat (limited to 'scripts/fr.py')
-rwxr-xr-xscripts/fr.py250
1 files changed, 250 insertions, 0 deletions
diff --git a/scripts/fr.py b/scripts/fr.py
new file mode 100755
index 0000000..9802b55
--- /dev/null
+++ b/scripts/fr.py
@@ -0,0 +1,250 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+HESE BSM flavour ratio MCMC analysis script
+"""
+
+from __future__ import absolute_import, division
+
+import os
+import argparse
+from functools import partial
+
+import numpy as np
+
+from utils import fr as fr_utils
+from utils import gf as gf_utils
+from utils import llh as llh_utils
+from utils import mcmc as mcmc_utils
+from utils import misc as misc_utils
+from utils import plot as plot_utils
+from utils.enums import DataType, Likelihood, MCMCSeedType
+from utils.enums import ParamTag, PriorsCateg, Texture
+from utils.param import Param, ParamSet
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ tag = ParamTag.SM_ANGLES
+ nuisance = []
+ g_prior = PriorsCateg.GAUSSIAN
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ e = 1e-9
+ nuisance.extend([
+ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
+ Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
+ Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
+ Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
+ Param(
+ name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
+ std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ ),
+ Param(
+ name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
+ std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ )
+ ])
+ tag = ParamTag.NUISANCE
+ nuisance.extend([
+ Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
+ Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
+ Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
+ Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag),
+ Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ """Make the paramsets for generating the Asmimov MC sample and also running
+ the MCMC.
+ """
+ asimov_paramset = []
+ llh_paramset = []
+
+ gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)]
+
+ llh_paramset.extend(
+ [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
+ )
+ llh_paramset.extend(gf_nuisance)
+
+ for parm in llh_paramset:
+ parm.value = args.__getattribute__(parm.name)
+
+ boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
+ tag = ParamTag.SCALE
+ llh_paramset.append(
+ Param(
+ name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
+ tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
+ misc_utils.get_units(args.dimension)+r'\right )',
+ tag=tag
+ )
+ )
+ llh_paramset = ParamSet(llh_paramset)
+
+ tag = ParamTag.BESTFIT
+ if args.data is not DataType.REAL:
+ flavour_angles = fr_utils.fr_to_angles(args.injected_ratio)
+ else:
+ flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
+
+ asimov_paramset.extend(gf_nuisance)
+ asimov_paramset.extend([
+ Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ asimov_paramset = ParamSet(asimov_paramset)
+
+ return asimov_paramset, llh_paramset
+
+
+def nuisance_argparse(parser):
+ nuisance = define_nuisance()
+ for parm in nuisance:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+
+def process_args(args):
+ """Process the input args."""
+ args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
+ if args.data is not DataType.REAL:
+ args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio)
+
+ args.binning = np.logspace(
+ np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
+ )
+
+ args.likelihood = Likelihood.GOLEMFIT
+
+ args.mcmc_threads = misc_utils.thread_factors(args.threads)[1]
+ args.threads = misc_utils.thread_factors(args.threads)[0]
+
+ if args.texture is Texture.NONE:
+ raise ValueError('Must assume a BSM texture')
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='25',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--datadir', type=str, default='./untitled',
+ help='Path to store chains'
+ )
+ fr_utils.fr_argparse(parser)
+ gf_utils.gf_argparse(parser)
+ llh_utils.llh_argparse(parser)
+ mcmc_utils.mcmc_argparse(parser)
+ nuisance_argparse(parser)
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
+ outfile = args.datadir + '/{0}/{1}/chains_'.format(
+ *map(misc_utils.parse_enum, [args.stat_method, args.data])
+ ) + misc_utils.gen_identifier(args)
+ print '== {0:<25} = {1}'.format('outfile', outfile)
+
+ if args.run_mcmc:
+ gf_utils.setup_fitter(args, asimov_paramset)
+
+ print 'asimov_paramset', asimov_paramset
+ print 'llh_paramset', llh_paramset
+
+ ln_prob = partial(
+ llh_utils.ln_prob,
+ args=args,
+ asimov_paramset=asimov_paramset,
+ llh_paramset=llh_paramset
+ )
+
+ if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
+ p0 = mcmc_utils.flat_seed(
+ llh_paramset, nwalkers=args.nwalkers
+ )
+ elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
+ p0 = mcmc_utils.gaussian_seed(
+ llh_paramset, nwalkers=args.nwalkers
+ )
+
+ samples = mcmc_utils.mcmc(
+ p0 = p0,
+ ln_prob = ln_prob,
+ ndim = len(llh_paramset),
+ nwalkers = args.nwalkers,
+ burnin = args.burnin,
+ nsteps = args.nsteps,
+ args = args,
+ threads = args.mcmc_threads
+ )
+ mcmc_utils.save_chains(samples, outfile)
+
+ raw = np.load(outfile+'.npy')
+ raw[:,4] *= 1E23
+ raw[:,5] *= 1E21
+ ranges = list(llh_paramset.ranges)
+ ranges[4] = [x*1E23 for x in ranges[4]]
+ ranges[5] = [x*1E21 for x in ranges[5]]
+
+ labels = [
+ r'${\rm sin}^2\theta_{12}$',
+ r'${\rm cos}^4\theta_{13}$',
+ r'${\rm sin}^2\theta_{23}$',
+ r'$\delta$',
+ r'$\Delta m_{21}^2\left[10^{-5}\,{\rm eV}^2\right]$',
+ r'$\Delta m_{31}^2\left[10^{-3}\,{\rm eV}^2\right]$',
+ r'$N_{\rm conv}$',
+ r'$N_{\rm prompt}$',
+ r'$N_{\rm muon}$',
+ r'$N_{\rm astro}$',
+ r'$\gamma_{\rm astro}$',
+ r'${\rm log}_{10}\left[\Lambda^{-1}_{'+ \
+ r'{0}'.format(args.dimension)+r'}'+ \
+ misc_utils.get_units(args.dimension)+r'\right]$'
+ ]
+
+ plot_utils.chainer_plot(
+ infile = raw,
+ outfile = outfile[:5]+outfile[5:].replace('data', 'plots'),
+ outformat = ['pdf'],
+ args = args,
+ llh_paramset = llh_paramset,
+ labels = labels,
+ ranges = ranges
+ )
+ print "DONE!"
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()