aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/mc_texture.py
diff options
context:
space:
mode:
Diffstat (limited to 'scripts/mc_texture.py')
-rwxr-xr-xscripts/mc_texture.py233
1 files changed, 233 insertions, 0 deletions
diff --git a/scripts/mc_texture.py b/scripts/mc_texture.py
new file mode 100755
index 0000000..b61855e
--- /dev/null
+++ b/scripts/mc_texture.py
@@ -0,0 +1,233 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : April 25, 2019
+
+"""
+Sample points for a specific scenario
+"""
+
+from __future__ import absolute_import, division
+
+import argparse
+from copy import deepcopy
+from functools import partial
+
+import numpy as np
+
+from utils import fr as fr_utils
+from utils import llh as llh_utils
+from utils import mcmc as mcmc_utils
+from utils import misc as misc_utils
+from utils import plot as plot_utils
+from utils.enums import MCMCSeedType, ParamTag, PriorsCateg, Texture
+from utils.param import Param, ParamSet
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ tag = ParamTag.SM_ANGLES
+ nuisance = []
+ g_prior = PriorsCateg.GAUSSIAN
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ e = 1e-9
+ nuisance.extend([
+ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
+ Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
+ Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
+ Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
+ Param(
+ name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
+ std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ ),
+ Param(
+ name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
+ std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ )
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ """Make the paramsets for generating the Asmimov MC sample and also running
+ the MCMC.
+ """
+ asimov_paramset = []
+ llh_paramset = []
+
+ llh_paramset.extend(
+ [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
+ )
+
+ for parm in llh_paramset:
+ parm.value = args.__getattribute__(parm.name)
+
+ boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
+ tag = ParamTag.SCALE
+ llh_paramset.append(
+ Param(
+ name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
+ tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
+ misc_utils.get_units(args.dimension)+r'\right )',
+ tag=tag
+ )
+ )
+ llh_paramset = ParamSet(llh_paramset)
+
+ tag = ParamTag.BESTFIT
+ flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
+ asimov_paramset.extend([
+ Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ asimov_paramset = ParamSet(asimov_paramset)
+
+ return asimov_paramset, llh_paramset
+
+
+def nuisance_argparse(parser):
+ nuisance = define_nuisance()
+ for parm in nuisance:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+
+def process_args(args):
+ """Process the input args."""
+ if args.texture is Texture.NONE:
+ raise ValueError('Must assume a BSM texture')
+ args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
+
+ args.binning = np.logspace(
+ np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
+ )
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='25',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--spectral-index', type=float, default='-2',
+ help='Astro spectral index'
+ )
+ parser.add_argument(
+ '--datadir', type=str, default='./untitled',
+ help='Path to store chains'
+ )
+ fr_utils.fr_argparse(parser)
+ mcmc_utils.mcmc_argparse(parser)
+ nuisance_argparse(parser)
+ misc_utils.remove_option(parser, 'injected_ratio')
+ misc_utils.remove_option(parser, 'plot_angles')
+ misc_utils.remove_option(parser, 'plot_elements')
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def gen_identifier(args):
+ f = '_DIM{0}'.format(args.dimension)
+ f += '_SRC_' + misc_utils.solve_ratio(args.source_ratio)
+ f += '_{0}'.format(misc_utils.str_enum(args.texture))
+ return f
+
+
+def triangle_llh(theta, args, llh_paramset):
+ """Log likelihood function for a given theta."""
+ if len(theta) != len(llh_paramset):
+ raise AssertionError(
+ 'Dimensions of scan is not the same as the input '
+ 'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
+ )
+ for idx, param in enumerate(llh_paramset):
+ param.value = theta[idx]
+
+ return 1. # Flat LLH
+
+
+def ln_prob(theta, args, llh_paramset):
+ dc_llh_paramset = deepcopy(llh_paramset)
+ lp = llh_utils.lnprior(theta, paramset=dc_llh_paramset)
+ if not np.isfinite(lp):
+ return -np.inf
+ return lp + triangle_llh(
+ theta,
+ args = args,
+ llh_paramset = dc_llh_paramset,
+ )
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
+
+ prefix = ''
+ outfile = args.datadir + '/mc_texture' + prefix + gen_identifier(args)
+ print '== {0:<25} = {1}'.format('outfile', outfile)
+
+ print 'asimov_paramset', asimov_paramset
+ print 'llh_paramset', llh_paramset
+
+ if args.run_mcmc:
+ ln_prob_eval = partial(
+ ln_prob,
+ llh_paramset = llh_paramset,
+ args = args,
+ )
+
+ if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
+ p0 = mcmc_utils.flat_seed(
+ llh_paramset, nwalkers=args.nwalkers
+ )
+ elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
+ p0 = mcmc_utils.gaussian_seed(
+ llh_paramset, nwalkers=args.nwalkers
+ )
+
+ samples = mcmc_utils.mcmc(
+ p0 = p0,
+ ln_prob = ln_prob_eval,
+ ndim = len(llh_paramset),
+ nwalkers = args.nwalkers,
+ burnin = args.burnin,
+ nsteps = args.nsteps,
+ args = args,
+ threads = args.threads
+ )
+
+ frs = np.array(
+ map(lambda x: fr_utils.flux_averaged_BSMu(
+ x, args, args.spectral_index, llh_paramset
+ ), samples),
+ dtype=float
+ )
+ frs_scale = np.vstack((frs.T, samples[:-1].T)).T
+ mcmc_utils.save_chains(frs_scale, outfile)
+
+ print "DONE!"
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()