aboutsummaryrefslogtreecommitdiffstats
path: root/scripts
diff options
context:
space:
mode:
Diffstat (limited to 'scripts')
-rw-r--r--scripts/contour.py260
-rw-r--r--scripts/fr.py250
-rw-r--r--scripts/mc_texture.py233
-rw-r--r--scripts/mc_unitary.py203
-rw-r--r--scripts/mc_x.py203
-rw-r--r--scripts/plot_sens.py295
-rw-r--r--scripts/sens.py296
7 files changed, 1740 insertions, 0 deletions
diff --git a/scripts/contour.py b/scripts/contour.py
new file mode 100644
index 0000000..6f08617
--- /dev/null
+++ b/scripts/contour.py
@@ -0,0 +1,260 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : November 26, 2018
+
+"""
+HESE flavour ratio contour
+"""
+
+from __future__ import absolute_import, division
+
+import os
+import argparse
+from copy import deepcopy
+from functools import partial
+
+import numpy as np
+
+from golemflavor import fr as fr_utils
+from golemflavor import gf as gf_utils
+from golemflavor import llh as llh_utils
+from golemflavor import misc as misc_utils
+from golemflavor import mcmc as mcmc_utils
+from golemflavor import plot as plot_utils
+from golemflavor.enums import str_enum
+from golemflavor.enums import DataType, Likelihood, MCMCSeedType, ParamTag
+from golemflavor.enums import PriorsCateg
+from golemflavor.param import Param, ParamSet
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ nuisance = []
+ tag = ParamTag.NUISANCE
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ nuisance.extend([
+ Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
+ Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, prior=lg_prior, tag=tag),
+ # Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, tag=tag),
+ # Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, tag=tag),
+ Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0., 10.], std=0.1, tag=tag),
+ Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0., 20.], std=1.5, tag=tag),
+ Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag),
+ # Param(name='CRDeltaGamma', value=0., seed=[-0.1, 0.1 ], ranges=[-1., 1. ], std=0.1, tag=tag),
+ # Param(name='NeutrinoAntineutrinoRatio', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
+ # Param(name='anisotropyScale', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
+ # Param(name='domEfficiency', value=0.99, seed=[0.8, 1.2 ], ranges=[0.8, 1.2 ], std=0.1, tag=tag),
+ # Param(name='holeiceForward', value=0., seed=[-0.8, 0.8 ], ranges=[-4.42, 1.58 ], std=0.1, tag=tag),
+ # Param(name='piKRatio', value=1.0, seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag)
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ """Make the paramsets for generating the Asmimov MC sample and also running
+ the MCMC.
+ """
+ asimov_paramset = []
+ llh_paramset = []
+
+ gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)]
+ llh_paramset.extend(gf_nuisance)
+
+ for parm in llh_paramset:
+ parm.value = args.__getattribute__(parm.name)
+
+ llh_paramset = ParamSet(llh_paramset)
+
+ if args.data is not DataType.REAL:
+ flavour_angles = fr_utils.fr_to_angles(args.injected_ratio)
+ else:
+ flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
+
+ tag = ParamTag.BESTFIT
+ asimov_paramset.extend(gf_nuisance)
+ asimov_paramset.extend([
+ Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ asimov_paramset = ParamSet(asimov_paramset)
+
+ return asimov_paramset, llh_paramset
+
+
+def nuisance_argparse(parser):
+ nuisance = define_nuisance()
+ for parm in nuisance:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+def process_args(args):
+ """Process the input args."""
+ if args.data is not DataType.REAL:
+ args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio)
+
+ args.likelihood = Likelihood.GOLEMFIT
+
+ args.mcmc_threads = misc_utils.thread_factors(args.threads)[0]
+ args.threads = misc_utils.thread_factors(args.threads)[1]
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--injected-ratio', type=float, nargs=3, default=[1, 1, 1],
+ help='Set the central value for the injected flavour ratio at IceCube'
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='26',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--datadir', type=str, default='./untitled',
+ help='Path to output results'
+ )
+ gf_utils.gf_argparse(parser)
+ mcmc_utils.mcmc_argparse(parser)
+ nuisance_argparse(parser)
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def gen_identifier(args):
+ f = '_{0}'.format(str_enum(args.data))
+ if args.data is not DataType.REAL:
+ f += '_INJ_{0}'.format(misc_utils.solve_ratio(args.injected_ratio))
+ return f
+
+
+def gen_figtext(args):
+ """Generate the figure text."""
+ t = r'$'
+ if args.data is DataType.REAL:
+ t += r'\textbf{IceCube\:Preliminary}$'
+ elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
+ t += r'{\rm\bf IceCube\:Simulation}' + '$\n$'
+ t += r'\rm{Injected\:composition}'+r'\:=\:({0})_\oplus'.format(
+ solve_ratio(args.injected_ratio).replace('_', ':')
+ ) + '$'
+ return t
+
+
+def triangle_llh(theta, args, hypo_paramset):
+ """Log likelihood function for a given theta."""
+ if len(theta) != len(hypo_paramset):
+ raise AssertionError(
+ 'Dimensions of scan is not the same as the input '
+ 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset)
+ )
+ for idx, param in enumerate(hypo_paramset):
+ param.value = theta[idx]
+
+ if args.likelihood is Likelihood.GOLEMFIT:
+ llh = gf_utils.get_llh(hypo_paramset)
+ elif args.likelihood is Likelihood.GF_FREQ:
+ llh = gf_utils.get_llh_freq(hypo_paramset)
+
+ return llh
+
+
+def ln_prob(theta, args, hypo_paramset):
+ dc_hypo_paramset = deepcopy(hypo_paramset)
+ lp = llh_utils.lnprior(theta, paramset=dc_hypo_paramset)
+ if not np.isfinite(lp):
+ return -np.inf
+ return lp + triangle_llh(
+ theta,
+ args = args,
+ hypo_paramset = dc_hypo_paramset,
+ )
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance())
+ hypo_paramset.extend(asimov_paramset.from_tag(ParamTag.BESTFIT))
+
+ prefix = ''
+ outfile = args.datadir + '/contour' + prefix + gen_identifier(args)
+ print '== {0:<25} = {1}'.format('outfile', outfile)
+
+ print 'asimov_paramset', asimov_paramset
+ print 'hypo_paramset', hypo_paramset
+
+ if args.run_mcmc:
+ gf_utils.setup_fitter(args, asimov_paramset)
+
+ ln_prob_eval = partial(
+ ln_prob,
+ hypo_paramset = hypo_paramset,
+ args = args,
+ )
+
+ if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
+ p0 = mcmc_utils.flat_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
+ elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
+ p0 = mcmc_utils.gaussian_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
+
+ samples = mcmc_utils.mcmc(
+ p0 = p0,
+ ln_prob = ln_prob_eval,
+ ndim = len(hypo_paramset),
+ nwalkers = args.nwalkers,
+ burnin = args.burnin,
+ nsteps = args.nsteps,
+ args = args,
+ threads = args.mcmc_threads
+ )
+ mcmc_utils.save_chains(samples, outfile)
+
+ labels = [
+ r'$N_{\rm conv}$',
+ r'$N_{\rm prompt}$',
+ r'$N_{\rm muon}$',
+ r'$N_{\rm astro}$',
+ r'$\gamma_{\rm astro}$',
+ r'$\text{sin}^4\phi_\oplus$',
+ r'$\text{cos}\left(2\psi_\oplus\right)$',
+ ]
+
+ of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior'
+ plot_utils.chainer_plot(
+ infile = outfile+'.npy',
+ outfile = of,
+ outformat = ['pdf'],
+ args = args,
+ llh_paramset = hypo_paramset,
+ fig_text = gen_figtext(args),
+ labels = labels
+ )
+
+ print "DONE!"
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()
diff --git a/scripts/fr.py b/scripts/fr.py
new file mode 100644
index 0000000..e32d7d0
--- /dev/null
+++ b/scripts/fr.py
@@ -0,0 +1,250 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+HESE BSM flavour ratio MCMC analysis script
+"""
+
+from __future__ import absolute_import, division
+
+import os
+import argparse
+from functools import partial
+
+import numpy as np
+
+from golemflavor import fr as fr_utils
+from golemflavor import gf as gf_utils
+from golemflavor import llh as llh_utils
+from golemflavor import mcmc as mcmc_utils
+from golemflavor import misc as misc_utils
+from golemflavor import plot as plot_utils
+from golemflavor.enums import DataType, Likelihood, MCMCSeedType
+from golemflavor.enums import ParamTag, PriorsCateg, Texture
+from golemflavor.param import Param, ParamSet
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ tag = ParamTag.SM_ANGLES
+ nuisance = []
+ g_prior = PriorsCateg.GAUSSIAN
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ e = 1e-9
+ nuisance.extend([
+ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
+ Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
+ Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
+ Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
+ Param(
+ name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
+ std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ ),
+ Param(
+ name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
+ std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ )
+ ])
+ tag = ParamTag.NUISANCE
+ nuisance.extend([
+ Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
+ Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
+ Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
+ Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag),
+ Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ """Make the paramsets for generating the Asmimov MC sample and also running
+ the MCMC.
+ """
+ asimov_paramset = []
+ llh_paramset = []
+
+ gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)]
+
+ llh_paramset.extend(
+ [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
+ )
+ llh_paramset.extend(gf_nuisance)
+
+ for parm in llh_paramset:
+ parm.value = args.__getattribute__(parm.name)
+
+ boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
+ tag = ParamTag.SCALE
+ llh_paramset.append(
+ Param(
+ name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
+ tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
+ misc_utils.get_units(args.dimension)+r'\right )',
+ tag=tag
+ )
+ )
+ llh_paramset = ParamSet(llh_paramset)
+
+ tag = ParamTag.BESTFIT
+ if args.data is not DataType.REAL:
+ flavour_angles = fr_utils.fr_to_angles(args.injected_ratio)
+ else:
+ flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
+
+ asimov_paramset.extend(gf_nuisance)
+ asimov_paramset.extend([
+ Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ asimov_paramset = ParamSet(asimov_paramset)
+
+ return asimov_paramset, llh_paramset
+
+
+def nuisance_argparse(parser):
+ nuisance = define_nuisance()
+ for parm in nuisance:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+
+def process_args(args):
+ """Process the input args."""
+ args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
+ if args.data is not DataType.REAL:
+ args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio)
+
+ args.binning = np.logspace(
+ np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
+ )
+
+ args.likelihood = Likelihood.GOLEMFIT
+
+ args.mcmc_threads = misc_utils.thread_factors(args.threads)[1]
+ args.threads = misc_utils.thread_factors(args.threads)[0]
+
+ if args.texture is Texture.NONE:
+ raise ValueError('Must assume a BSM texture')
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='25',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--datadir', type=str, default='./untitled',
+ help='Path to store chains'
+ )
+ fr_utils.fr_argparse(parser)
+ gf_utils.gf_argparse(parser)
+ llh_utils.llh_argparse(parser)
+ mcmc_utils.mcmc_argparse(parser)
+ nuisance_argparse(parser)
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
+ outfile = args.datadir + '/{0}/{1}/chains_'.format(
+ *map(misc_utils.parse_enum, [args.stat_method, args.data])
+ ) + misc_utils.gen_identifier(args)
+ print '== {0:<25} = {1}'.format('outfile', outfile)
+
+ if args.run_mcmc:
+ gf_utils.setup_fitter(args, asimov_paramset)
+
+ print 'asimov_paramset', asimov_paramset
+ print 'llh_paramset', llh_paramset
+
+ ln_prob = partial(
+ llh_utils.ln_prob,
+ args=args,
+ asimov_paramset=asimov_paramset,
+ llh_paramset=llh_paramset
+ )
+
+ if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
+ p0 = mcmc_utils.flat_seed(
+ llh_paramset, nwalkers=args.nwalkers
+ )
+ elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
+ p0 = mcmc_utils.gaussian_seed(
+ llh_paramset, nwalkers=args.nwalkers
+ )
+
+ samples = mcmc_utils.mcmc(
+ p0 = p0,
+ ln_prob = ln_prob,
+ ndim = len(llh_paramset),
+ nwalkers = args.nwalkers,
+ burnin = args.burnin,
+ nsteps = args.nsteps,
+ args = args,
+ threads = args.mcmc_threads
+ )
+ mcmc_utils.save_chains(samples, outfile)
+
+ raw = np.load(outfile+'.npy')
+ raw[:,4] *= 1E23
+ raw[:,5] *= 1E21
+ ranges = list(llh_paramset.ranges)
+ ranges[4] = [x*1E23 for x in ranges[4]]
+ ranges[5] = [x*1E21 for x in ranges[5]]
+
+ labels = [
+ r'${\rm sin}^2\theta_{12}$',
+ r'${\rm cos}^4\theta_{13}$',
+ r'${\rm sin}^2\theta_{23}$',
+ r'$\delta$',
+ r'$\Delta m_{21}^2\left[10^{-5}\,{\rm eV}^2\right]$',
+ r'$\Delta m_{31}^2\left[10^{-3}\,{\rm eV}^2\right]$',
+ r'$N_{\rm conv}$',
+ r'$N_{\rm prompt}$',
+ r'$N_{\rm muon}$',
+ r'$N_{\rm astro}$',
+ r'$\gamma_{\rm astro}$',
+ r'${\rm log}_{10}\left[\Lambda^{-1}_{'+ \
+ r'{0}'.format(args.dimension)+r'}'+ \
+ misc_utils.get_units(args.dimension)+r'\right]$'
+ ]
+
+ plot_utils.chainer_plot(
+ infile = raw,
+ outfile = outfile[:5]+outfile[5:].replace('data', 'plots'),
+ outformat = ['pdf'],
+ args = args,
+ llh_paramset = llh_paramset,
+ labels = labels,
+ ranges = ranges
+ )
+ print "DONE!"
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()
diff --git a/scripts/mc_texture.py b/scripts/mc_texture.py
new file mode 100644
index 0000000..2813dc0
--- /dev/null
+++ b/scripts/mc_texture.py
@@ -0,0 +1,233 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : April 25, 2019
+
+"""
+Sample points for a specific scenario
+"""
+
+from __future__ import absolute_import, division
+
+import argparse
+from copy import deepcopy
+from functools import partial
+
+import numpy as np
+
+from golemflavor import fr as fr_utils
+from golemflavor import llh as llh_utils
+from golemflavor import mcmc as mcmc_utils
+from golemflavor import misc as misc_utils
+from golemflavor import plot as plot_utils
+from golemflavor.enums import MCMCSeedType, ParamTag, PriorsCateg, Texture
+from golemflavor.param import Param, ParamSet
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ tag = ParamTag.SM_ANGLES
+ nuisance = []
+ g_prior = PriorsCateg.GAUSSIAN
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ e = 1e-9
+ nuisance.extend([
+ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
+ Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
+ Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
+ Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
+ Param(
+ name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
+ std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ ),
+ Param(
+ name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
+ std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ )
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ """Make the paramsets for generating the Asmimov MC sample and also running
+ the MCMC.
+ """
+ asimov_paramset = []
+ llh_paramset = []
+
+ llh_paramset.extend(
+ [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
+ )
+
+ for parm in llh_paramset:
+ parm.value = args.__getattribute__(parm.name)
+
+ boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
+ tag = ParamTag.SCALE
+ llh_paramset.append(
+ Param(
+ name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
+ tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
+ misc_utils.get_units(args.dimension)+r'\right )',
+ tag=tag
+ )
+ )
+ llh_paramset = ParamSet(llh_paramset)
+
+ tag = ParamTag.BESTFIT
+ flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
+ asimov_paramset.extend([
+ Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ asimov_paramset = ParamSet(asimov_paramset)
+
+ return asimov_paramset, llh_paramset
+
+
+def nuisance_argparse(parser):
+ nuisance = define_nuisance()
+ for parm in nuisance:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+
+def process_args(args):
+ """Process the input args."""
+ if args.texture is Texture.NONE:
+ raise ValueError('Must assume a BSM texture')
+ args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
+
+ args.binning = np.logspace(
+ np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
+ )
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='25',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--spectral-index', type=float, default='-2',
+ help='Astro spectral index'
+ )
+ parser.add_argument(
+ '--datadir', type=str, default='./untitled',
+ help='Path to store chains'
+ )
+ fr_utils.fr_argparse(parser)
+ mcmc_utils.mcmc_argparse(parser)
+ nuisance_argparse(parser)
+ misc_utils.remove_option(parser, 'injected_ratio')
+ misc_utils.remove_option(parser, 'plot_angles')
+ misc_utils.remove_option(parser, 'plot_elements')
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def gen_identifier(args):
+ f = '_DIM{0}'.format(args.dimension)
+ f += '_SRC_' + misc_utils.solve_ratio(args.source_ratio)
+ f += '_{0}'.format(misc_utils.str_enum(args.texture))
+ return f
+
+
+def triangle_llh(theta, args, llh_paramset):
+ """Log likelihood function for a given theta."""
+ if len(theta) != len(llh_paramset):
+ raise AssertionError(
+ 'Dimensions of scan is not the same as the input '
+ 'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
+ )
+ for idx, param in enumerate(llh_paramset):
+ param.value = theta[idx]
+
+ return 1. # Flat LLH
+
+
+def ln_prob(theta, args, llh_paramset):
+ dc_llh_paramset = deepcopy(llh_paramset)
+ lp = llh_utils.lnprior(theta, paramset=dc_llh_paramset)
+ if not np.isfinite(lp):
+ return -np.inf
+ return lp + triangle_llh(
+ theta,
+ args = args,
+ llh_paramset = dc_llh_paramset,
+ )
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
+
+ prefix = ''
+ outfile = args.datadir + '/mc_texture' + prefix + gen_identifier(args)
+ print '== {0:<25} = {1}'.format('outfile', outfile)
+
+ print 'asimov_paramset', asimov_paramset
+ print 'llh_paramset', llh_paramset
+
+ if args.run_mcmc:
+ ln_prob_eval = partial(
+ ln_prob,
+ llh_paramset = llh_paramset,
+ args = args,
+ )
+
+ if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
+ p0 = mcmc_utils.flat_seed(
+ llh_paramset, nwalkers=args.nwalkers
+ )
+ elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
+ p0 = mcmc_utils.gaussian_seed(
+ llh_paramset, nwalkers=args.nwalkers
+ )
+
+ samples = mcmc_utils.mcmc(
+ p0 = p0,
+ ln_prob = ln_prob_eval,
+ ndim = len(llh_paramset),
+ nwalkers = args.nwalkers,
+ burnin = args.burnin,
+ nsteps = args.nsteps,
+ args = args,
+ threads = args.threads
+ )
+
+ frs = np.array(
+ map(lambda x: fr_utils.flux_averaged_BSMu(
+ x, args, args.spectral_index, llh_paramset
+ ), samples),
+ dtype=float
+ )
+ frs_scale = np.vstack((frs.T, samples[:-1].T)).T
+ mcmc_utils.save_chains(frs_scale, outfile)
+
+ print "DONE!"
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()
diff --git a/scripts/mc_unitary.py b/scripts/mc_unitary.py
new file mode 100644
index 0000000..bbd5a28
--- /dev/null
+++ b/scripts/mc_unitary.py
@@ -0,0 +1,203 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+Sample points only assuming unitarity
+"""
+
+from __future__ import absolute_import, division
+
+import argparse
+from copy import deepcopy
+from functools import partial
+
+import numpy as np
+
+from golemflavor import fr as fr_utils
+from golemflavor import llh as llh_utils
+from golemflavor import mcmc as mcmc_utils
+from golemflavor import misc as misc_utils
+from golemflavor import plot as plot_utils
+from golemflavor.enums import MCMCSeedType, ParamTag, PriorsCateg
+from golemflavor.param import Param, ParamSet
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ tag = ParamTag.SM_ANGLES
+ nuisance = []
+ g_prior = PriorsCateg.GAUSSIAN
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ e = 1e-9
+ nuisance.extend([
+ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', tag=tag),
+ Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', tag=tag),
+ Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', tag=tag),
+ Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ """Make the paramsets for generating the Asmimov MC sample and also running
+ the MCMC.
+ """
+ asimov_paramset = []
+ hypo_paramset = []
+
+ hypo_paramset.extend(
+ [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
+ )
+
+ for parm in hypo_paramset:
+ parm.value = args.__getattribute__(parm.name)
+
+ hypo_paramset = ParamSet(hypo_paramset)
+
+ tag = ParamTag.BESTFIT
+ flavour_angles = fr_utils.fr_to_angles(args.source_ratio)
+
+ asimov_paramset.extend([
+ Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ asimov_paramset = ParamSet(asimov_paramset)
+
+ return asimov_paramset, hypo_paramset
+
+
+def nuisance_argparse(parser):
+ nuisance = define_nuisance()
+ for parm in nuisance:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+
+def process_args(args):
+ """Process the input args."""
+ args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--source-ratio', type=float, nargs=3, default=[1, 2, 0],
+ help='Set the source flavour ratio'
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='26',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--datadir', type=str, default='./untitled',
+ help='Path to store chains'
+ )
+ mcmc_utils.mcmc_argparse(parser)
+ nuisance_argparse(parser)
+ misc_utils.remove_option(parser, 'plot_angles')
+ misc_utils.remove_option(parser, 'plot_elements')
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def gen_identifier(args):
+ f = '_SRC_{0}'.format(misc_utils.solve_ratio(args.source_ratio))
+ return f
+
+
+def triangle_llh(theta, args, hypo_paramset):
+ """Log likelihood function for a given theta."""
+ if len(theta) != len(hypo_paramset):
+ raise AssertionError(
+ 'Dimensions of scan is not the same as the input '
+ 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset)
+ )
+ for idx, param in enumerate(hypo_paramset):
+ param.value = theta[idx]
+
+ return 1. # Flat LLH
+
+
+def ln_prob(theta, args, hypo_paramset):
+ dc_hypo_paramset = deepcopy(hypo_paramset)
+ lp = llh_utils.lnprior(theta, paramset=dc_hypo_paramset)
+ if not np.isfinite(lp):
+ return -np.inf
+ return lp + triangle_llh(
+ theta,
+ args = args,
+ hypo_paramset = dc_hypo_paramset,
+ )
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance())
+
+ prefix = ''
+ outfile = args.datadir + '/mc_unitary' + prefix + gen_identifier(args)
+ print '== {0:<25} = {1}'.format('outfile', outfile)
+
+ print 'asimov_paramset', asimov_paramset
+ print 'hypo_paramset', hypo_paramset
+
+ if args.run_mcmc:
+ ln_prob_eval = partial(
+ ln_prob,
+ hypo_paramset = hypo_paramset,
+ args = args,
+ )
+
+ if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
+ p0 = mcmc_utils.flat_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
+ elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
+ p0 = mcmc_utils.gaussian_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
+
+ samples = mcmc_utils.mcmc(
+ p0 = p0,
+ ln_prob = ln_prob_eval,
+ ndim = len(hypo_paramset),
+ nwalkers = args.nwalkers,
+ burnin = args.burnin,
+ nsteps = args.nsteps,
+ args = args,
+ threads = args.threads
+ )
+
+ mmxs = map(fr_utils.angles_to_u, samples)
+ frs = np.array(
+ [fr_utils.u_to_fr(args.source_ratio, x) for x in mmxs]
+ )
+ mcmc_utils.save_chains(frs, outfile)
+
+ print "DONE!"
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()
diff --git a/scripts/mc_x.py b/scripts/mc_x.py
new file mode 100644
index 0000000..04319c4
--- /dev/null
+++ b/scripts/mc_x.py
@@ -0,0 +1,203 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+emcee sample SM points for (x, 1-x, 0)
+"""
+
+from __future__ import absolute_import, division
+
+import argparse
+from copy import deepcopy
+from functools import partial
+
+import numpy as np
+
+from golemflavor import fr as fr_utils
+from golemflavor import llh as llh_utils
+from golemflavor import mcmc as mcmc_utils
+from golemflavor import misc as misc_utils
+from golemflavor import plot as plot_utils
+from golemflavor.enums import MCMCSeedType, ParamTag, PriorsCateg
+from golemflavor.param import Param, ParamSet
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ tag = ParamTag.SM_ANGLES
+ nuisance = []
+ g_prior = PriorsCateg.GAUSSIAN
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ e = 1e-9
+ nuisance.extend([
+ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
+ Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
+ Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
+ Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
+ ])
+ tag = ParamTag.SRCANGLES
+ nuisance.extend([
+ Param(name='astroX', value=0.5, seed=[0., 1.], ranges=[0., 1.], std=0.1, tex=r'x', tag=tag)
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ """Make the paramsets for generating the Asmimov MC sample and also running
+ the MCMC.
+ """
+ asimov_paramset = []
+ hypo_paramset = []
+
+ hypo_paramset.extend(
+ [x for x in nuisance_paramset.from_tag((
+ ParamTag.SM_ANGLES, ParamTag.SRCANGLES
+ ))]
+ )
+
+ for parm in hypo_paramset:
+ parm.value = args.__getattribute__(parm.name)
+
+ hypo_paramset = ParamSet(hypo_paramset)
+
+ tag = ParamTag.BESTFIT
+ asimov_paramset.extend([
+ Param(name='astroFlavorAngle1', value=0., ranges=[ 0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=0., ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ asimov_paramset = ParamSet(asimov_paramset)
+
+ return asimov_paramset, hypo_paramset
+
+
+def nuisance_argparse(parser):
+ nuisance = define_nuisance()
+ for parm in nuisance:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+
+def process_args(args):
+ """Process the input args."""
+ pass
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='26',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--datadir', type=str, default='./untitled',
+ help='Path to store chains'
+ )
+ mcmc_utils.mcmc_argparse(parser)
+ nuisance_argparse(parser)
+ misc_utils.remove_option(parser, 'injected_ratio')
+ misc_utils.remove_option(parser, 'plot_angles')
+ misc_utils.remove_option(parser, 'plot_elements')
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def triangle_llh(theta, args, hypo_paramset):
+ """Log likelihood function for a given theta."""
+ if len(theta) != len(hypo_paramset):
+ raise AssertionError(
+ 'Dimensions of scan is not the same as the input '
+ 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset)
+ )
+ for idx, param in enumerate(hypo_paramset):
+ param.value = theta[idx]
+
+ return 1. # Flat LLH
+
+
+def ln_prob(theta, args, hypo_paramset):
+ dc_hypo_paramset = deepcopy(hypo_paramset)
+ lp = llh_utils.lnprior(theta, paramset=dc_hypo_paramset)
+ if not np.isfinite(lp):
+ return -np.inf
+ return lp + triangle_llh(
+ theta,
+ args = args,
+ hypo_paramset = dc_hypo_paramset,
+ )
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance())
+
+ prefix = ''
+ outfile = args.datadir + '/mc_x' + prefix
+ print '== {0:<25} = {1}'.format('outfile', outfile)
+
+ print 'asimov_paramset', asimov_paramset
+ print 'hypo_paramset', hypo_paramset
+
+ if args.run_mcmc:
+ ln_prob_eval = partial(
+ ln_prob,
+ hypo_paramset = hypo_paramset,
+ args = args,
+ )
+
+ if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
+ p0 = mcmc_utils.flat_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
+ elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
+ p0 = mcmc_utils.gaussian_seed(
+ hypo_paramset, nwalkers=args.nwalkers
+ )
+
+ samples = mcmc_utils.mcmc(
+ p0 = p0,
+ ln_prob = ln_prob_eval,
+ ndim = len(hypo_paramset),
+ nwalkers = args.nwalkers,
+ burnin = args.burnin,
+ nsteps = args.nsteps,
+ args = args,
+ threads = args.threads
+ )
+
+ nsamples = len(samples)
+ srcs = [fr_utils.normalise_fr((x, 1-x, 0)) for x in samples.T[-1]]
+ mmxs = map(fr_utils.angles_to_u, samples.T[:-1].T)
+ frs = np.array(
+ [fr_utils.u_to_fr(srcs[i], mmxs[i]) for i in xrange(nsamples)],
+ dtype=np.float64
+ )
+ mcmc_utils.save_chains(frs, outfile)
+
+ print "DONE!"
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()
+
diff --git a/scripts/plot_sens.py b/scripts/plot_sens.py
new file mode 100644
index 0000000..18e0c03
--- /dev/null
+++ b/scripts/plot_sens.py
@@ -0,0 +1,295 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : April 28, 2018
+
+"""
+HESE BSM flavour ratio analysis plotting script
+"""
+
+from __future__ import absolute_import, division
+
+import os
+import argparse
+from functools import partial
+from copy import deepcopy
+
+import numpy as np
+import numpy.ma as ma
+
+from golemflavor import fr as fr_utils
+from golemflavor import llh as llh_utils
+from golemflavor import plot as plot_utils
+from golemflavor.enums import DataType, Texture
+from golemflavor.misc import enum_parse, parse_bool, parse_enum, print_args
+from golemflavor.misc import gen_identifier, SortingHelpFormatter
+from golemflavor.param import Param, ParamSet
+
+
+MASK_X = (0.3, 0.7)
+
+
+def process_args(args):
+ """Process the input args."""
+ if args.data is not DataType.REAL:
+ args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio)
+
+ # Anon points
+ anon = []
+ if args.dimensions[0] == 3:
+ anon.append([0.825, 0.845])
+ anon.append([0.865, 0.875])
+ anon.append([0.875, 0.885])
+ anon.append([0.905, 0.915])
+ anon.append([0.925, 0.935])
+ if args.dimensions[0] == 4:
+ anon.append([0.165, 0.175])
+ anon.append([0.805, 0.825])
+ anon.append([0.835, 0.845])
+ anon.append([0.855, 0.885])
+ anon.append([0.965, 0.975])
+ if args.dimensions[0] == 5:
+ anon.append([0.895, 0.905])
+ anon.append([0.955, 0.965])
+ if args.dimensions[0] == 6:
+ anon.append([0.115, 0.125])
+ anon.append([0.855, 0.865])
+ if args.dimensions[0] == 7:
+ # anon.append([0.815, 0.835])
+ anon.append([0.875, 0.885])
+ if args.dimensions[0] == 8:
+ anon.append([0.915, 0.935])
+ anon.append([0.875, 0.895])
+ anon.append([0.845, 0.855])
+
+ if args.source_ratios is not None:
+ if args.x_segments is not None:
+ raise ValueError('Cannot do both --source-ratios and --x-segments')
+ if len(args.source_ratios) % 3 != 0:
+ raise ValueError(
+ 'Invalid source ratios input {0}'.format(args.source_ratios)
+ )
+
+ srs = [args.source_ratios[3*x:3*x+3]
+ for x in range(int(len(args.source_ratios)/3))]
+ args.source_ratios = map(fr_utils.normalise_fr, srs)
+ elif args.x_segments is not None:
+ x_array = np.linspace(0, 1, args.x_segments)
+ sources = []
+ for x in x_array:
+ if x >= MASK_X[0] and x <= MASK_X[1]: continue
+ skip = False
+ for a in anon:
+ if (a[1] > x) & (x > a[0]):
+ print 'Skipping src', x
+ skip = True
+ break
+ if skip: continue
+ sources.append([x, 1-x, 0])
+ args.source_ratios = sources
+ else:
+ raise ValueError('Must supply either --source-ratios or --x-segments')
+
+ args.dimensions = np.sort(args.dimensions)
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="HESE BSM flavour ratio analysis plotting script",
+ formatter_class=SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--datadir', type=str,
+ default='/data/user/smandalia/flavour_ratio/data/sensitivity',
+ help='Path to data directory'
+ )
+ parser.add_argument(
+ '--segments', type=int, default=10,
+ help='Number of new physics scales to evaluate'
+ )
+ parser.add_argument(
+ '--split-jobs', type=parse_bool, default='True',
+ help='Did the jobs get split'
+ )
+ parser.add_argument(
+ '--dimensions', type=int, nargs='*', default=[3, 6],
+ help='Set the new physics dimensions to consider'
+ )
+ parser.add_argument(
+ '--source-ratios', type=int, nargs='*', default=None,
+ required=False, help='Set the source flavour ratios'
+ )
+ parser.add_argument(
+ '--x-segments', type=int, default=None,
+ required=False, help='Number of segments in x'
+ )
+ parser.add_argument(
+ '--texture', type=partial(enum_parse, c=Texture),
+ default='none', choices=Texture, help='Set the BSM mixing texture'
+ )
+ parser.add_argument(
+ '--data', default='asimov', type=partial(enum_parse, c=DataType),
+ choices=DataType, help='select datatype'
+ )
+ parser.add_argument(
+ '--plot-x', type=parse_bool, default='False',
+ help='Make sensitivity plot x vs limit'
+ )
+ parser.add_argument(
+ '--plot-table', type=parse_bool, default='False',
+ help='Make sensitivity table plot'
+ )
+ parser.add_argument(
+ '--plot-statistic', type=parse_bool, default='False',
+ help='Plot MultiNest evidence or LLH value'
+ )
+ llh_utils.llh_argparse(parser)
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ print_args(args)
+
+ dims = len(args.dimensions)
+ srcs = len(args.source_ratios)
+ if args.texture is Texture.NONE:
+ textures = [Texture.OEU, Texture.OET, Texture.OUT]
+ if args.plot_table:
+ textures = [Texture.OET, Texture.OUT]
+ else:
+ textures = [args.texture]
+ texs = len(textures)
+
+ prefix = ''
+ # prefix = 'noprior'
+
+ # Initialise data structure.
+ statistic_arr = np.full((dims, srcs, texs, args.segments, 2), np.nan)
+
+ print 'Loading data'
+ argsc = deepcopy(args)
+ for idim, dim in enumerate(args.dimensions):
+ argsc.dimension = dim
+
+ datadir = args.datadir + '/DIM{0}'.format(dim)
+ # Array of scales to scan over.
+ boundaries = fr_utils.SCALE_BOUNDARIES[argsc.dimension]
+ eval_scales = np.linspace(
+ boundaries[0], boundaries[1], args.segments-1
+ )
+ eval_scales = np.concatenate([[-100.], eval_scales])
+
+ for isrc, src in enumerate(args.source_ratios):
+ argsc.source_ratio = src
+
+ for itex, texture in enumerate(textures):
+ argsc.texture = texture
+
+ base_infile = datadir + '/{0}/{1}/'.format(
+ *map(parse_enum, [args.stat_method, args.data])
+ ) + r'{0}/fr_stat'.format(prefix) + gen_identifier(argsc)
+
+ print '== {0:<25} = {1}'.format('base_infile', base_infile)
+
+ if args.split_jobs:
+ for idx_sc, scale in enumerate(eval_scales):
+ infile = base_infile + '_scale_{0:.0E}'.format(
+ np.power(10, scale)
+ )
+ try:
+ print 'Loading from {0}'.format(infile+'.npy')
+ statistic_arr[idim][isrc][itex][idx_sc] = \
+ np.load(infile+'.npy')[0]
+ except:
+ print 'Unable to load file {0}'.format(
+ infile+'.npy'
+ )
+ # raise
+ continue
+ else:
+ print 'Loading from {0}'.format(base_infile+'.npy')
+ try:
+ statistic_arr[idim][isrc][itex] = \
+ np.load(base_infile+'.npy')
+ except:
+ print 'Unable to load file {0}'.format(
+ base_infile+'.npy'
+ )
+ continue
+
+ data = ma.masked_invalid(statistic_arr)
+
+ print 'data', data
+ if args.plot_statistic:
+ print 'Plotting statistic'
+
+ for idim, dim in enumerate(args.dimensions):
+ argsc.dimension = dim
+
+ # Array of scales to scan over.
+ boundaries = fr_utils.SCALE_BOUNDARIES[argsc.dimension]
+ eval_scales = np.linspace(
+ boundaries[0], boundaries[1], args.segments-1
+ )
+ eval_scales = np.concatenate([[-100.], eval_scales])
+
+ for isrc, src in enumerate(args.source_ratios):
+ argsc.source_ratio = src
+ for itex, texture in enumerate(textures):
+ argsc.texture = texture
+
+ base_infile = args.datadir + '/DIM{0}/{1}/{2}/'.format(
+ dim, *map(parse_enum, [args.stat_method, args.data])
+ ) + r'{0}/fr_stat'.format(prefix) + gen_identifier(argsc)
+ basename = os.path.dirname(base_infile)
+ outfile = basename[:5]+basename[5:].replace('data', 'plots')
+ outfile += '/' + os.path.basename(base_infile)
+
+ label = r'$\text{Texture}=' + plot_utils.texture_label(texture)[1:]
+ plot_utils.plot_statistic(
+ data = data[idim][isrc][itex],
+ outfile = outfile,
+ outformat = ['png'],
+ args = argsc,
+ scale_param = scale,
+ label = label
+ )
+
+ basename = args.datadir[:5]+args.datadir[5:].replace('data', 'plots')
+ baseoutfile = basename + '/{0}/{1}/'.format(
+ *map(parse_enum, [args.stat_method, args.data])
+ ) + r'{0}'.format(prefix)
+
+ argsc = deepcopy(args)
+ if args.plot_x:
+ for idim, dim in enumerate(args.dimensions):
+ print '|||| DIM = {0}'.format(dim)
+ argsc.dimension = dim
+ plot_utils.plot_x(
+ data = data[idim],
+ outfile = baseoutfile + '/hese_x_DIM{0}'.format(dim),
+ outformat = ['png', 'pdf'],
+ args = argsc,
+ normalise = True
+ )
+
+ if args.plot_table:
+ plot_utils.plot_table_sens(
+ data = data,
+ outfile = baseoutfile + '/hese_table',
+ outformat = ['png', 'pdf'],
+ args = args,
+ show_lvatmo = True
+ )
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()
diff --git a/scripts/sens.py b/scripts/sens.py
new file mode 100644
index 0000000..6368159
--- /dev/null
+++ b/scripts/sens.py
@@ -0,0 +1,296 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : March 17, 2018
+
+"""
+HESE BSM flavour ratio analysis script
+"""
+
+from __future__ import absolute_import, division
+
+import os
+import argparse
+from functools import partial
+
+import glob
+
+import numpy as np
+import numpy.ma as ma
+from scipy.optimize import minimize
+
+from golemflavor import fr as fr_utils
+from golemflavor import gf as gf_utils
+from golemflavor import llh as llh_utils
+from golemflavor import misc as misc_utils
+from golemflavor import mn as mn_utils
+from golemflavor.enums import str_enum
+from golemflavor.enums import DataType, Likelihood, ParamTag
+from golemflavor.enums import PriorsCateg, StatCateg, Texture
+from golemflavor.param import Param, ParamSet
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ tag = ParamTag.SM_ANGLES
+ nuisance = []
+ g_prior = PriorsCateg.GAUSSIAN
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ e = 1e-9
+ nuisance.extend([
+ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
+ Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
+ Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
+ Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
+ Param(
+ name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
+ std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ ),
+ Param(
+ name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
+ std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
+ )
+ ])
+ tag = ParamTag.NUISANCE
+ nuisance.extend([
+ Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
+ Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
+ Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
+ Param(name='astroNorm', value=8.0, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag),
+ Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ """Make the paramsets for generating the Asmimov MC sample and also running
+ the MCMC.
+ """
+ asimov_paramset = []
+ llh_paramset = []
+
+ gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)]
+
+ llh_paramset.extend(
+ [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
+ )
+ llh_paramset.extend(gf_nuisance)
+
+ for parm in llh_paramset:
+ parm.value = args.__getattribute__(parm.name)
+
+ boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
+ tag = ParamTag.SCALE
+ llh_paramset.append(
+ Param(
+ name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
+ tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
+ misc_utils.get_units(args.dimension)+r'\right )',
+ tag=tag
+ )
+ )
+ llh_paramset = ParamSet(llh_paramset)
+
+ tag = ParamTag.BESTFIT
+ if args.data is not DataType.REAL:
+ flavour_angles = fr_utils.fr_to_angles(args.injected_ratio)
+ else:
+ flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
+
+ asimov_paramset.extend(gf_nuisance)
+ asimov_paramset.extend([
+ Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ asimov_paramset = ParamSet(asimov_paramset)
+
+ return asimov_paramset, llh_paramset
+
+
+def nuisance_argparse(parser):
+ nuisance = define_nuisance()
+ for parm in nuisance:
+ parser.add_argument(
+ '--'+parm.name, type=float, default=parm.value,
+ help=parm.name+' to inject'
+ )
+
+
+def process_args(args):
+ """Process the input args."""
+ args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
+ if args.data is not DataType.REAL:
+ args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio)
+
+ args.binning = np.logspace(
+ np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
+ )
+
+ if args.eval_segment.lower() == 'all':
+ args.eval_segment = None
+ else:
+ args.eval_segment = int(args.eval_segment)
+
+ if args.stat_method is StatCateg.BAYESIAN:
+ args.likelihood = Likelihood.GOLEMFIT
+ elif args.stat_method is StatCateg.FREQUENTIST:
+ args.likelihood = Likelihood.GF_FREQ
+
+ if args.texture is Texture.NONE:
+ raise ValueError('Must assume a BSM texture')
+
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="BSM flavour ratio analysis",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--seed', type=misc_utils.seed_parse, default='25',
+ help='Set the random seed value'
+ )
+ parser.add_argument(
+ '--threads', type=misc_utils.thread_type, default='1',
+ help='Set the number of threads to use (int or "max")'
+ )
+ parser.add_argument(
+ '--datadir', type=str, default='./untitled',
+ help='Path to store chains'
+ )
+ parser.add_argument(
+ '--segments', type=int, default=10,
+ help='Number of new physics scales to evaluate'
+ )
+ parser.add_argument(
+ '--eval-segment', type=str, default='all',
+ help='Which point to evalaute'
+ )
+ parser.add_argument(
+ '--overwrite', type=misc_utils.parse_bool, default='False',
+ help='Overwrite chains'
+ )
+ fr_utils.fr_argparse(parser)
+ gf_utils.gf_argparse(parser)
+ llh_utils.llh_argparse(parser)
+ mn_utils.mn_argparse(parser)
+ nuisance_argparse(parser)
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ if args.seed is not None:
+ np.random.seed(args.seed)
+
+ asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
+
+ # Scale and BSM mixings will be fixed.
+ scale_prm = llh_paramset.from_tag(ParamTag.SCALE)[0]
+ base_mn_pset = llh_paramset.from_tag(ParamTag.SCALE, invert=True)
+
+ # Array of scales to scan over.
+ boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
+ eval_scales = np.linspace(boundaries[0], boundaries[1], args.segments-1)
+ eval_scales = np.concatenate([[-100.], eval_scales])
+
+ # Evaluate just one point (job), or all points.
+ if args.eval_segment is None:
+ eval_dim = args.segments
+ else: eval_dim = 1
+
+ outfile = args.datadir + '/{0}/{1}/fr_stat'.format(
+ *map(misc_utils.parse_enum, [args.stat_method, args.data])
+ ) + misc_utils.gen_identifier(args)
+
+ if not args.overwrite and os.path.isfile(outfile+'.npy'):
+ print 'FILE EXISTS {0}'.format(outfile+'.npy')
+ print 'Exiting...'
+ return
+
+ # Setup Golemfit.
+ if args.run_mn:
+ gf_utils.setup_fitter(args, asimov_paramset)
+
+ # Initialise data structure.
+ stat_arr = np.full((eval_dim, 2), np.nan)
+
+ for idx_sc, scale in enumerate(eval_scales):
+ if args.eval_segment is not None:
+ if idx_sc == args.eval_segment:
+ outfile += '_scale_{0:.0E}'.format(np.power(10, scale))
+ else: continue
+ print '|||| SCALE = {0:.0E}'.format(np.power(10, scale))
+
+ if not args.overwrite and os.path.isfile(outfile+'.npy'):
+ print 'FILE EXISTS {0}'.format(outfile+'.npy')
+ t = np.load(outfile+'.npy')
+ if np.any(~np.isfinite(t)):
+ print 'nan found, rerunning...'
+ pass
+ else:
+ print 'Exiting...'
+ return
+
+ # Lower scale boundary for first (NULL) point and set the scale param.
+ reset_range = None
+ if scale < scale_prm.ranges[0]:
+ reset_range = scale_prm.ranges
+ scale_prm.ranges = (scale, scale_prm.ranges[1])
+ scale_prm.value = scale
+
+ identifier = 'b{0}_{1}_{2}_sca{3}'.format(
+ args.eval_segment, args.segments, str_enum(args.texture), scale
+ )
+ llh = '{0}'.format(args.likelihood).split('.')[1]
+ data = '{0}'.format(args.data).split('.')[1]
+ src_string = misc_utils.solve_ratio(args.source_ratio)
+ prefix = args.mn_output + '/DIM{0}/{1}/{2}/s{3}/{4}'.format(
+ args.dimension, data, llh, src_string, identifier
+ )
+ try:
+ stat = mn_utils.mn_evidence(
+ mn_paramset = base_mn_pset,
+ llh_paramset = llh_paramset,
+ asimov_paramset = asimov_paramset,
+ args = args,
+ prefix = prefix
+ )
+ except:
+ print 'Failed run'
+ raise
+ print '## Evidence = {0}'.format(stat)
+
+ if args.eval_segment is not None:
+ stat_arr[0] = np.array([scale, stat])
+ else:
+ stat_arr[idx_sc] = np.array([scale, stat])
+
+ # Cleanup.
+ if reset_range is not None:
+ scale_prm.ranges = reset_range
+
+ if args.run_mn and not args.debug:
+ try:
+ for f in glob.glob(prefix + '*'):
+ print 'cleaning file {0}'.format(f)
+ os.remove(f)
+ except:
+ print 'got error trying to cleanup, continuing'
+ pass
+
+ misc_utils.make_dir(outfile)
+ print 'Saving to {0}'.format(outfile+'.npy')
+ np.save(outfile+'.npy', stat_arr)
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()