aboutsummaryrefslogtreecommitdiffstats
path: root/sens.py
diff options
context:
space:
mode:
Diffstat (limited to 'sens.py')
-rwxr-xr-xsens.py296
1 files changed, 0 insertions, 296 deletions
diff --git a/sens.py b/sens.py
deleted file mode 100755
index 963a33b..0000000
--- a/sens.py
+++ /dev/null
@@ -1,296 +0,0 @@
-#! /usr/bin/env python
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : March 17, 2018
-
-"""
-HESE BSM flavour ratio analysis script
-"""
-
-from __future__ import absolute_import, division
-
-import os
-import argparse
-from functools import partial
-
-import glob
-
-import numpy as np
-import numpy.ma as ma
-from scipy.optimize import minimize
-
-from utils import fr as fr_utils
-from utils import gf as gf_utils
-from utils import llh as llh_utils
-from utils import misc as misc_utils
-from utils import mn as mn_utils
-from utils.enums import str_enum
-from utils.enums import DataType, Likelihood, ParamTag
-from utils.enums import PriorsCateg, StatCateg, Texture
-from utils.param import Param, ParamSet
-
-
-def define_nuisance():
- """Define the nuisance parameters."""
- tag = ParamTag.SM_ANGLES
- nuisance = []
- g_prior = PriorsCateg.GAUSSIAN
- lg_prior = PriorsCateg.LIMITEDGAUSS
- e = 1e-9
- nuisance.extend([
- Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag),
- Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag),
- Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag),
- Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag),
- Param(
- name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23],
- std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
- ),
- Param(
- name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21],
- std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag
- )
- ])
- tag = ParamTag.NUISANCE
- nuisance.extend([
- Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
- Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
- Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
- Param(name='astroNorm', value=8.0, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag),
- Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
- ])
- return ParamSet(nuisance)
-
-
-def get_paramsets(args, nuisance_paramset):
- """Make the paramsets for generating the Asmimov MC sample and also running
- the MCMC.
- """
- asimov_paramset = []
- llh_paramset = []
-
- gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)]
-
- llh_paramset.extend(
- [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)]
- )
- llh_paramset.extend(gf_nuisance)
-
- for parm in llh_paramset:
- parm.value = args.__getattribute__(parm.name)
-
- boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
- tag = ParamTag.SCALE
- llh_paramset.append(
- Param(
- name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3,
- tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \
- misc_utils.get_units(args.dimension)+r'\right )',
- tag=tag
- )
- )
- llh_paramset = ParamSet(llh_paramset)
-
- tag = ParamTag.BESTFIT
- if args.data is not DataType.REAL:
- flavour_angles = fr_utils.fr_to_angles(args.injected_ratio)
- else:
- flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
-
- asimov_paramset.extend(gf_nuisance)
- asimov_paramset.extend([
- Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
- Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
- ])
- asimov_paramset = ParamSet(asimov_paramset)
-
- return asimov_paramset, llh_paramset
-
-
-def nuisance_argparse(parser):
- nuisance = define_nuisance()
- for parm in nuisance:
- parser.add_argument(
- '--'+parm.name, type=float, default=parm.value,
- help=parm.name+' to inject'
- )
-
-
-def process_args(args):
- """Process the input args."""
- args.source_ratio = fr_utils.normalise_fr(args.source_ratio)
- if args.data is not DataType.REAL:
- args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio)
-
- args.binning = np.logspace(
- np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1
- )
-
- if args.eval_segment.lower() == 'all':
- args.eval_segment = None
- else:
- args.eval_segment = int(args.eval_segment)
-
- if args.stat_method is StatCateg.BAYESIAN:
- args.likelihood = Likelihood.GOLEMFIT
- elif args.stat_method is StatCateg.FREQUENTIST:
- args.likelihood = Likelihood.GF_FREQ
-
- if args.texture is Texture.NONE:
- raise ValueError('Must assume a BSM texture')
-
-
-def parse_args(args=None):
- """Parse command line arguments"""
- parser = argparse.ArgumentParser(
- description="BSM flavour ratio analysis",
- formatter_class=misc_utils.SortingHelpFormatter,
- )
- parser.add_argument(
- '--seed', type=misc_utils.seed_parse, default='25',
- help='Set the random seed value'
- )
- parser.add_argument(
- '--threads', type=misc_utils.thread_type, default='1',
- help='Set the number of threads to use (int or "max")'
- )
- parser.add_argument(
- '--datadir', type=str, default='./untitled',
- help='Path to store chains'
- )
- parser.add_argument(
- '--segments', type=int, default=10,
- help='Number of new physics scales to evaluate'
- )
- parser.add_argument(
- '--eval-segment', type=str, default='all',
- help='Which point to evalaute'
- )
- parser.add_argument(
- '--overwrite', type=misc_utils.parse_bool, default='False',
- help='Overwrite chains'
- )
- fr_utils.fr_argparse(parser)
- gf_utils.gf_argparse(parser)
- llh_utils.llh_argparse(parser)
- mn_utils.mn_argparse(parser)
- nuisance_argparse(parser)
- if args is None: return parser.parse_args()
- else: return parser.parse_args(args.split())
-
-
-def main():
- args = parse_args()
- process_args(args)
- misc_utils.print_args(args)
-
- if args.seed is not None:
- np.random.seed(args.seed)
-
- asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance())
-
- # Scale and BSM mixings will be fixed.
- scale_prm = llh_paramset.from_tag(ParamTag.SCALE)[0]
- base_mn_pset = llh_paramset.from_tag(ParamTag.SCALE, invert=True)
-
- # Array of scales to scan over.
- boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension]
- eval_scales = np.linspace(boundaries[0], boundaries[1], args.segments-1)
- eval_scales = np.concatenate([[-100.], eval_scales])
-
- # Evaluate just one point (job), or all points.
- if args.eval_segment is None:
- eval_dim = args.segments
- else: eval_dim = 1
-
- outfile = args.datadir + '/{0}/{1}/fr_stat'.format(
- *map(misc_utils.parse_enum, [args.stat_method, args.data])
- ) + misc_utils.gen_identifier(args)
-
- if not args.overwrite and os.path.isfile(outfile+'.npy'):
- print 'FILE EXISTS {0}'.format(outfile+'.npy')
- print 'Exiting...'
- return
-
- # Setup Golemfit.
- if args.run_mn:
- gf_utils.setup_fitter(args, asimov_paramset)
-
- # Initialise data structure.
- stat_arr = np.full((eval_dim, 2), np.nan)
-
- for idx_sc, scale in enumerate(eval_scales):
- if args.eval_segment is not None:
- if idx_sc == args.eval_segment:
- outfile += '_scale_{0:.0E}'.format(np.power(10, scale))
- else: continue
- print '|||| SCALE = {0:.0E}'.format(np.power(10, scale))
-
- if not args.overwrite and os.path.isfile(outfile+'.npy'):
- print 'FILE EXISTS {0}'.format(outfile+'.npy')
- t = np.load(outfile+'.npy')
- if np.any(~np.isfinite(t)):
- print 'nan found, rerunning...'
- pass
- else:
- print 'Exiting...'
- return
-
- # Lower scale boundary for first (NULL) point and set the scale param.
- reset_range = None
- if scale < scale_prm.ranges[0]:
- reset_range = scale_prm.ranges
- scale_prm.ranges = (scale, scale_prm.ranges[1])
- scale_prm.value = scale
-
- identifier = 'b{0}_{1}_{2}_sca{3}'.format(
- args.eval_segment, args.segments, str_enum(args.texture), scale
- )
- llh = '{0}'.format(args.likelihood).split('.')[1]
- data = '{0}'.format(args.data).split('.')[1]
- src_string = misc_utils.solve_ratio(args.source_ratio)
- prefix = args.mn_output + '/DIM{0}/{1}/{2}/s{3}/{4}'.format(
- args.dimension, data, llh, src_string, identifier
- )
- try:
- stat = mn_utils.mn_evidence(
- mn_paramset = base_mn_pset,
- llh_paramset = llh_paramset,
- asimov_paramset = asimov_paramset,
- args = args,
- prefix = prefix
- )
- except:
- print 'Failed run'
- raise
- print '## Evidence = {0}'.format(stat)
-
- if args.eval_segment is not None:
- stat_arr[0] = np.array([scale, stat])
- else:
- stat_arr[idx_sc] = np.array([scale, stat])
-
- # Cleanup.
- if reset_range is not None:
- scale_prm.ranges = reset_range
-
- if args.run_mn and not args.debug:
- try:
- for f in glob.glob(prefix + '*'):
- print 'cleaning file {0}'.format(f)
- os.remove(f)
- except:
- print 'got error trying to cleanup, continuing'
- pass
-
- misc_utils.make_dir(outfile)
- print 'Saving to {0}'.format(outfile+'.npy')
- np.save(outfile+'.npy', stat_arr)
-
-
-main.__doc__ = __doc__
-
-
-if __name__ == '__main__':
- main()