diff options
Diffstat (limited to 'sens.py')
| -rwxr-xr-x | sens.py | 164 |
1 files changed, 98 insertions, 66 deletions
@@ -25,6 +25,7 @@ from utils import misc as misc_utils from utils import plot as plot_utils from utils.enums import EnergyDependance, Likelihood, ParamTag from utils.enums import PriorsCateg, SensitivityCateg, StatCateg +from utils.misc import DTYPE from utils.param import Param, ParamSet, get_paramsets from utils import multinest as mn_utils @@ -34,11 +35,13 @@ def define_nuisance(): """Define the nuisance parameters.""" tag = ParamTag.SM_ANGLES g_prior = PriorsCateg.GAUSSIAN + hg_prior = PriorsCateg.HALFGAUSS + e = 1e-9 nuisance = [ - Param(name='s_12_2', value=0.307, seed=[0.29, 0.31], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=g_prior, tag=tag), - Param(name='c_13_4', value=1-(0.02206)**2, seed=[0.998, 1.0], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=g_prior, tag=tag), - Param(name='s_23_2', value=0.538, seed=[0.46, 0.61], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=g_prior, tag=tag), - Param(name='dcp', value=4.08404, seed=[0, 2*np.pi], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag), + Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=g_prior, tag=tag), + Param(name='c_13_4', value=1-(0.02206)**2, seed=[0.995, 1-e], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=hg_prior, tag=tag), + Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=g_prior, tag=tag), + Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag), Param( name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23], std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag @@ -76,9 +79,9 @@ def process_args(args): raise NotImplementedError( '--fix-mixing and --fix-mixing-almost cannot be used together' ) - if args.mn_run and args.fix_scale: + if args.sens_run and args.fix_scale: raise NotImplementedError( - '--mn-run and --fix-scale cannot be used together' + '--sens-run and --fix-scale cannot be used together' ) args.measured_ratio = fr_utils.normalise_fr(args.measured_ratio) @@ -94,13 +97,13 @@ def process_args(args): args.scale = fr_utils.estimate_scale(args) args.scale_region = (args.scale/args.scale_region, args.scale*args.scale_region) - if args.mn_eval_bin.lower() == 'all': - args.mn_eval_bin = None + if args.sens_eval_bin.lower() == 'all': + args.sens_eval_bin = None else: - args.mn_eval_bin = int(args.mn_eval_bin) + args.sens_eval_bin = int(args.sens_eval_bin) if args.stat_method is StatCateg.FREQUENTIST and \ - args.likelihood is Likelihood.GOLEMFIT:: + args.likelihood is Likelihood.GOLEMFIT: args.likelihood = Likelihood.GF_FREQ @@ -123,6 +126,10 @@ def parse_args(args=None): help='Path to output chains' ) parser.add_argument( + '--sens-run', type=misc_utils.parse_bool, default='True', + help='Generate sensitivities' + ) + parser.add_argument( '--run-method', default='full', type=partial(misc_utils.enum_parse, c=SensitivityCateg), choices=SensitivityCateg, @@ -134,7 +141,15 @@ def parse_args(args=None): help='Statistical method to employ' ) parser.add_argument( - '--plot-statistic', type=parse_bool, default='False', + '--sens-bins', type=int, default=10, + help='Number of bins for the Bayes factor plot' + ) + parser.add_argument( + '--sens-eval-bin', type=str, default='all', + help='Which bin to evalaute for Bayes factor plot' + ) + parser.add_argument( + '--plot-statistic', type=misc_utils.parse_bool, default='False', help='Plot MultiNest evidence or LLH value' ) fr_utils.fr_argparse(parser) @@ -161,8 +176,10 @@ def main(): mmangles = llh_paramset.from_tag(ParamTag.MMANGLES) if args.run_method is SensitivityCateg.FULL: st_paramset_arr = [llh_paramset.from_tag(ParamTag.SCALE, invert=True)] - elif args.run_method is SensitivityCateg.FIXED_ANGLE or \ - args.run_method is SensitivityCateg.CORR_ANGLE: + elif args.run_method in [SensitivityCateg.FIXED_ANGLE, SensitivityCateg.CORR_ANGLE]: + nscale_pmset = llh_paramset.from_tag([ParamTag.SCALE, ParamTag.MMANGLES], invert=True) + st_paramset_arr = [nscale_pmset] * 3 + elif args.run_method in [SensitivityCateg.FIXED_ONE_ANGLE, SensitivityCateg.CORR_ONE_ANGLE]: nscale_pmset = llh_paramset.from_tag(ParamTag.SCALE, invert=True) st_paramset_arr = [] for x in xrange(3): @@ -171,55 +188,66 @@ def main(): if mmangles[x].name != prms.name]) ) + scan_scales = np.linspace( + np.log10(args.scale_region[0]), np.log10(args.scale_region[1]), args.sens_bins + ) + + if args.sens_eval_bin is None: + eval_dim = args.sens_bins + else: eval_dim = 1 + + if args.run_method is SensitivityCateg.CORR_ANGLE: + scan_angles = np.linspace(0+1e-9, 1-1e-9, eval_dim) + else: scan_angles = np.array([0]) + print 'scan_scales', scan_scales + print 'scan_angles', scan_angles + out = args.outfile+'/{0}/{1}/fr_stat'.format(args.stat_method, args.run_method) \ + misc_utils.gen_identifier(args) - if args.mn_run: - if args.likelihood is Likelihood.GOLEMFIT: + if args.sens_run: + if args.likelihood in [Likelihood.GOLEMFIT, Likelihood.GF_FREQ]: fitter = gf_utils.setup_fitter(args, asimov_paramset) - if args.StatCateg is StatCateg.FREQUENTIST: - fitter.SetFitParametersFlag(gf_utils.fit_flags(llh_paramset) + if args.stat_method is StatCateg.FREQUENTIST: + flags, gf_nuisance = gf_utils.fit_flags(llh_paramset) + llh_paramset = llh_paramset.remove_params(gf_nuisance) + asimov_paramset = asimov_paramset.remove_params(gf_nuisance) + st_paramset_arr = [x.remove_params(gf_nuisance) + for x in st_paramset_arr] + fitter.SetFitParametersFlag(flags) else: fitter = None - scan_scales = np.linspace( - np.log10(args.scale_region[0]), np.log10(args.scale_region[1]), args.mn_bins - ) - if args.run_method is SensitivityCateg.CORR_ANGLE: - scan_angles = np.linspace(0, 1, eval_dim) - else: scan_angles = np.array([0]) - print 'scan_scales', scan_scales - print 'scan_angles', scan_angles - - if args.mn_eval_bin is None: - eval_dim = args.mn_bins - else: eval_dim = 1 - if args.run_method is SensitivityCateg.FULL: statistic_arr = np.full((eval_dim, 2), np.nan) elif args.run_method is SensitivityCateg.FIXED_ANGLE: statistic_arr = np.full((len(st_paramset_arr), eval_dim, 2), np.nan) elif args.run_method is SensitivityCateg.CORR_ANGLE: - statistic_arr = np.full((len(st_paramset_arr), eval_dim, eval_dim, 3), np.nan) - + statistic_arr = np.full( + (len(st_paramset_arr), eval_dim, eval_dim, 3), np.nan + ) - for idx_scen, mn_paramset in enumerate(st_paramset_arr): + for idx_scen, sens_paramset in enumerate(st_paramset_arr): print '|||| SCENARIO = {0}'.format(idx_scen) - for x in mmangles: x.value = 0. - if args.run_method is SensitivityCateg.FIXED_ANGLE: + if args.run_method in [SensitivityCateg.FIXED_ONE_ANGLE, SensitivityCateg.FIXED_ANGLE]: + if SensitivityCateg.FIXED_ANGLE: + for x in mmangles: x.value = 0.+1e-9 if idx_scen == 0 or idx_scen == 2: - mmangles[idx_scen].value = np.sin(np.pi/2.)**2 + mmangles[idx_scen].value = np.sin(np.pi/4., dtype=DTYPE)**2 """s_12^2 or s_23^2""" elif idx_scen == 1: - mmangles[idx_scen].value = np.cos(np.pi/2.)**4 + mmangles[idx_scen].value = np.cos(np.pi/4., dtype=DTYPE)**4 """c_13^4""" for idx_an, an in enumerate(scan_angles): - if args.run_method is SensitivityCateg.CORR_ANGLE: + if args.run_method in [SensitivityCateg.CORR_ANGLE, + SensitivityCateg.CORR_ONE_ANGLE]: print '|||| ANGLE = {0:<04.2}'.format(an) - mmangles[idx_an].value = an + if SensitivityCateg.CORR_ANGLE: + for x in mmangles: x.value = 0.+1e-9 + mmangles[idx_scen].value = an for idx_sc, sc in enumerate(scan_scales): - if args.mn_eval_bin is not None: - if idx_sc == args.mn_eval_bin: + if args.sens_eval_bin is not None: + if idx_sc == args.sens_eval_bin: out += '_scale_{0:.0E}'.format(np.power(10, sc)) if args.run_method is SensitivityCateg.CORR_ANGLE: out += '_angle_{0:>03}'.format(int(an*100)) @@ -231,7 +259,7 @@ def main(): if args.stat_method is StatCateg.BAYESIAN: try: stat = mn_utils.mn_evidence( - mn_paramset = mn_paramset, + mn_paramset = sens_paramset, llh_paramset = llh_paramset, asimov_paramset = asimov_paramset, args = args, @@ -242,26 +270,30 @@ def main(): continue print '## Evidence = {0}'.format(stat) elif args.stat_method is StatCateg.FREQUENTIST: - llh_paramset_freq = [x for parm in llh_paramset if - x.name not in asimov_paramset.names] def fn(x): - for idx, parm in enumerate(llh_paramset_freq): - parm.value = x[idx] - theta = llh_paramset_freq.values - try: - llh = llh_utils.ln_prob( - theta=theta, args=args, asimov_paramset=asimov_paramset, - mcmc_paramset=mcmc_paramset_freq, fitter=fitter - ) - except: - print 'Failed run, continuing' - return np.inf + pranges = sens_paramset.seeds + for i, name in enumerate(sens_paramset.names): + llh_paramset[name].value = \ + (pranges[i][1]-pranges[i][0])*x[i] + pranges[i][0] + theta = llh_paramset.values + print 'llh_paramset', llh_paramset + llh = llh_utils.ln_prob( + theta=theta, args=args, asimov_paramset=asimov_paramset, + llh_paramset=llh_paramset, fitter=fitter + ) + print 'llh', llh return -llh - - x0 = np.average(llh_paramset_freq.values, axis=1) - res = minimize(fun=fn, x0=x0, method='L-BFGS-B', - bounds=llh_paramset.seed, fitter=fitter) + + n_params = len(sens_paramset) + x0 = np.full(n_params, 0.7) + bounds = np.dstack([np.zeros(n_params), np.ones(n_params)])[0] + try: + res = minimize(fun=fn, x0=x0, method='L-BFGS-B', bounds=bounds) + except AssertionError: + print 'Failed run, continuing' + continue stat = -fn(res.x) + print '=== final llh', stat if args.run_method is SensitivityCateg.FULL: statistic_arr[idx_sc] = np.array([sc, stat]) elif args.run_method is SensitivityCateg.FIXED_ANGLE: @@ -271,10 +303,10 @@ def main(): misc_utils.make_dir(out) print 'Saving to {0}'.format(out+'.npy') - np.save(out+'.npy', np.array(statistic_arr)) + np.save(out+'.npy', statistic_arr) if args.plot_statistic: - if args.mn_run: raw = statistic_arr + if args.sens_run: raw = statistic_arr else: raw = np.load(out+'.npy') data = ma.masked_invalid(raw, 0) @@ -292,9 +324,9 @@ def main(): for idx_scen in xrange(len(st_paramset_arr)): print '|||| SCENARIO = {0}'.format(idx_scen) outfile = baseoutfile + '_SCEN{0}'.format(idx_scen) - if idx_scen == 0: label = r'$\mathcal{O}_{12}=\frac{1}{2}$' - elif idx_scen == 1: label = r'$\mathcal{O}_{13}=\frac{1}{2}$' - elif idx_scen == 2: label = r'$\mathcal{O}_{23}=\frac{1}{2}$' + if idx_scen == 0: label = r'$\mathcal{O}_{12}=\frac{\pi}{4}$' + elif idx_scen == 1: label = r'$\mathcal{O}_{13}=\frac{\pi}{4}$' + elif idx_scen == 2: label = r'$\mathcal{O}_{23}=\frac{\pi}{4}$' plot_utils.plot_statistic( data = data[idx_scen], outfile = outfile, @@ -313,14 +345,14 @@ def main(): for idx_an, an in enumerate(scan_angles): print '|||| ANGLE = {0:<04.2}'.format(an) outfile = basescenoutfile + '_ANGLE{0}'.format(idx_an) - label += r'{0:<04.2}$'.format(an) + _label = label + r'{0:<04.2}$'.format(an) plot_utils.plot_statistic( data = data[idx_scen][idx_an][:,1:], outfile = outfile, outformat = ['png'], args = args, scale_param = scale, - label = label + label = _label ) |
