diff options
Diffstat (limited to 'sens.py')
| -rwxr-xr-x | sens.py | 336 |
1 files changed, 94 insertions, 242 deletions
@@ -16,6 +16,7 @@ from functools import partial import numpy as np import numpy.ma as ma +from scipy.optimize import minimize from utils import fr as fr_utils from utils import gf as gf_utils @@ -23,32 +24,44 @@ from utils import likelihood as llh_utils from utils import misc as misc_utils from utils import plot as plot_utils from utils.enums import EnergyDependance, Likelihood, ParamTag -from utils.enums import SensitivityCateg, StatCateg -from utils.fr import estimate_scale, normalise_fr -from utils.misc import enum_parse, parse_bool +from utils.enums import PriorsCateg, SensitivityCateg, StatCateg from utils.param import Param, ParamSet, get_paramsets from utils import multinest as mn_utils def define_nuisance(): - """Define the nuisance parameters to scan over with default values, - ranges and sigma. - """ + """Define the nuisance parameters.""" + tag = ParamTag.SM_ANGLES + g_prior = PriorsCateg.GAUSSIAN + nuisance = [ + Param(name='s_12_2', value=0.307, seed=[0.29, 0.31], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=g_prior, tag=tag), + Param(name='c_13_4', value=1-(0.02206)**2, seed=[0.998, 1.0], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=g_prior, tag=tag), + Param(name='s_23_2', value=0.538, seed=[0.46, 0.61], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=g_prior, tag=tag), + Param(name='dcp', value=4.08404, seed=[0, 2*np.pi], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag), + Param( + name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23], + std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag + ), + Param( + name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21], + std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag + ) + ] tag = ParamTag.NUISANCE - nuisance = ParamSet( + nuisance.extend([ Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0. , 50.], std=0.3, tag=tag), Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 50.], std=0.05, tag=tag), Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 50.], std=0.1, tag=tag), Param(name='astroNorm', value=6.9, seed=[0.1, 10.], ranges=[0. , 50.], std=0.1, tag=tag), Param(name='astroDeltaGamma', value=2.5, seed=[1. , 3. ], ranges=[-5., 5. ], std=0.1, tag=tag) - ) - return nuisance + ]) + return ParamSet(nuisance) def nuisance_argparse(parser): - nuisance_paramset = define_nuisance() - for parm in nuisance_paramset: + nuisance = define_nuisance() + for parm in nuisance: parser.add_argument( '--'+parm.name, type=float, default=parm.value, help=parm.name+' to inject' @@ -68,9 +81,9 @@ def process_args(args): '--mn-run and --fix-scale cannot be used together' ) - args.measured_ratio = normalise_fr(args.measured_ratio) + args.measured_ratio = fr_utils.normalise_fr(args.measured_ratio) if args.fix_source_ratio: - args.source_ratio = normalise_fr(args.source_ratio) + args.source_ratio = fr_utils.normalise_fr(args.source_ratio) if args.energy_dependance is EnergyDependance.SPECTRAL: args.binning = np.logspace( @@ -78,7 +91,7 @@ def process_args(args): ) if not args.fix_scale: - args.scale = estimate_scale(args) + args.scale = fr_utils.estimate_scale(args) args.scale_region = (args.scale/args.scale_region, args.scale*args.scale_region) if args.mn_eval_bin.lower() == 'all': @@ -86,6 +99,10 @@ def process_args(args): else: args.mn_eval_bin = int(args.mn_eval_bin) + if args.stat_method is StatCateg.FREQUENTIST and \ + args.likelihood is Likelihood.GOLEMFIT:: + args.likelihood = Likelihood.GF_FREQ + def parse_args(args=None): """Parse command line arguments""" @@ -107,14 +124,19 @@ def parse_args(args=None): ) parser.add_argument( '--run-method', default='full', - type=partial(enum_parse, c=SensitivityCateg), choices=SensitivityCateg, + type=partial(misc_utils.enum_parse, c=SensitivityCateg), + choices=SensitivityCateg, help='Choose which type of sensivity plot to make' ) parser.add_argument( '--stat-method', default='bayesian', - type=partial(enum_parse, c=StatCateg), choices=StatCateg, + type=partial(misc_utils.enum_parse, c=StatCateg), choices=StatCateg, help='Statistical method to employ' ) + parser.add_argument( + '--plot-statistic', type=parse_bool, default='False', + help='Plot MultiNest evidence or LLH value' + ) fr_utils.fr_argparse(parser) gf_utils.gf_argparse(parser) llh_utils.likelihood_argparse(parser) @@ -131,29 +153,31 @@ def main(): if args.seed is not None: np.random.seed(args.seed) - asimov_paramset, llh_paramset = get_paramsets(args) + asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance()) scale = llh_paramset.from_tag(ParamTag.SCALE)[0] outfile = misc_utils.gen_outfile_name(args) print '== {0:<25} = {1}'.format('outfile', outfile) mmangles = llh_paramset.from_tag(ParamTag.MMANGLES) if args.run_method is SensitivityCateg.FULL: - mn_paramset_arr = [llh_paramset.from_tag(ParamTag.SCALE, invert=True)] + st_paramset_arr = [llh_paramset.from_tag(ParamTag.SCALE, invert=True)] elif args.run_method is SensitivityCateg.FIXED_ANGLE or \ args.run_method is SensitivityCateg.CORR_ANGLE: nscale_pmset = llh_paramset.from_tag(ParamTag.SCALE, invert=True) - mn_paramset_arr = [] + st_paramset_arr = [] for x in xrange(3): - mn_paramset_arr.append( + st_paramset_arr.append( ParamSet([prms for prms in nscale_pmset if mmangles[x].name != prms.name]) ) - out = args.outfile+'/{0}/{1}/fr_evidence'.format(args.stat_method, args.run_method) \ + out = args.outfile+'/{0}/{1}/fr_stat'.format(args.stat_method, args.run_method) \ + misc_utils.gen_identifier(args) if args.mn_run: if args.likelihood is Likelihood.GOLEMFIT: fitter = gf_utils.setup_fitter(args, asimov_paramset) + if args.StatCateg is StatCateg.FREQUENTIST: + fitter.SetFitParametersFlag(gf_utils.fit_flags(llh_paramset) else: fitter = None scan_scales = np.linspace( @@ -170,14 +194,14 @@ def main(): else: eval_dim = 1 if args.run_method is SensitivityCateg.FULL: - evidence_arr = np.full((eval_dim, 2), np.nan) + statistic_arr = np.full((eval_dim, 2), np.nan) elif args.run_method is SensitivityCateg.FIXED_ANGLE: - evidence_arr = np.full((len(mn_paramset_arr), eval_dim, 2), np.nan) + statistic_arr = np.full((len(st_paramset_arr), eval_dim, 2), np.nan) elif args.run_method is SensitivityCateg.CORR_ANGLE: - evidence_arr = np.full((len(mn_paramset_arr), eval_dim, eval_dim, 3), np.nan) + statistic_arr = np.full((len(st_paramset_arr), eval_dim, eval_dim, 3), np.nan) - for idx_scen, mn_paramset in enumerate(mn_paramset_arr): + for idx_scen, mn_paramset in enumerate(st_paramset_arr): print '|||| SCENARIO = {0}'.format(idx_scen) for x in mmangles: x.value = 0. if args.run_method is SensitivityCateg.FIXED_ANGLE: @@ -204,38 +228,60 @@ def main(): print '|||| SCALE = {0:.0E}'.format(np.power(10, sc)) scale.value = sc - try: - a_lnZ = mn_utils.mn_evidence( - mn_paramset = mn_paramset, - llh_paramset = llh_paramset, - asimov_paramset = asimov_paramset, - args = args, - fitter = fitter - ) - except: - print 'Failed run, continuing' - continue - print '## Evidence = {0}'.format(a_lnZ) + if args.stat_method is StatCateg.BAYESIAN: + try: + stat = mn_utils.mn_evidence( + mn_paramset = mn_paramset, + llh_paramset = llh_paramset, + asimov_paramset = asimov_paramset, + args = args, + fitter = fitter + ) + except: + print 'Failed run, continuing' + continue + print '## Evidence = {0}'.format(stat) + elif args.stat_method is StatCateg.FREQUENTIST: + llh_paramset_freq = [x for parm in llh_paramset if + x.name not in asimov_paramset.names] + def fn(x): + for idx, parm in enumerate(llh_paramset_freq): + parm.value = x[idx] + theta = llh_paramset_freq.values + try: + llh = llh_utils.ln_prob( + theta=theta, args=args, asimov_paramset=asimov_paramset, + mcmc_paramset=mcmc_paramset_freq, fitter=fitter + ) + except: + print 'Failed run, continuing' + return np.inf + return -llh + + x0 = np.average(llh_paramset_freq.values, axis=1) + res = minimize(fun=fn, x0=x0, method='L-BFGS-B', + bounds=llh_paramset.seed, fitter=fitter) + stat = -fn(res.x) if args.run_method is SensitivityCateg.FULL: - evidence_arr[idx_sc] = np.array([sc, a_lnZ]) + statistic_arr[idx_sc] = np.array([sc, stat]) elif args.run_method is SensitivityCateg.FIXED_ANGLE: - evidence_arr[idx_scen][idx_sc] = np.array([sc, a_lnZ]) + statistic_arr[idx_scen][idx_sc] = np.array([sc, stat]) elif args.run_method is SensitivityCateg.CORR_ANGLE: - evidence_arr[idx_scen][idx_an][idx_sc] = np.array([an, sc, a_lnZ]) + statistic_arr[idx_scen][idx_an][idx_sc] = np.array([an, sc, stat]) misc_utils.make_dir(out) print 'Saving to {0}'.format(out+'.npy') - np.save(out+'.npy', np.array(evidence_arr)) + np.save(out+'.npy', np.array(statistic_arr)) - if args.plot_multinest: - if args.mn_run: raw = evidence_arr + if args.plot_statistic: + if args.mn_run: raw = statistic_arr else: raw = np.load(out+'.npy') data = ma.masked_invalid(raw, 0) basename = os.path.dirname(out) + '/mnrun/' + os.path.basename(out) baseoutfile = basename[:5]+basename[5:].replace('data', 'plots') if args.run_method is SensitivityCateg.FULL: - plot_utils.plot_multinest( + plot_utils.plot_statistic( data = data, outfile = baseoutfile, outformat = ['png'], @@ -243,13 +289,13 @@ def main(): scale_param = scale ) elif args.run_method is SensitivityCateg.FIXED_ANGLE: - for idx_scen in xrange(len(mn_paramset_arr)): + for idx_scen in xrange(len(st_paramset_arr)): print '|||| SCENARIO = {0}'.format(idx_scen) outfile = baseoutfile + '_SCEN{0}'.format(idx_scen) if idx_scen == 0: label = r'$\mathcal{O}_{12}=\frac{1}{2}$' elif idx_scen == 1: label = r'$\mathcal{O}_{13}=\frac{1}{2}$' elif idx_scen == 2: label = r'$\mathcal{O}_{23}=\frac{1}{2}$' - plot_utils.plot_multinest( + plot_utils.plot_statistic( data = data[idx_scen], outfile = outfile, outformat = ['png'], @@ -258,7 +304,7 @@ def main(): label = label ) elif args.run_method is SensitivityCateg.CORR_ANGLE: - for idx_scen in xrange(len(mn_paramset_arr)): + for idx_scen in xrange(len(st_paramset_arr)): print '|||| SCENARIO = {0}'.format(idx_scen) basescenoutfile = baseoutfile + '_SCEN{0}'.format(idx_scen) if idx_scen == 0: label = r'$\mathcal{O}_{12}=' @@ -268,7 +314,7 @@ def main(): print '|||| ANGLE = {0:<04.2}'.format(an) outfile = basescenoutfile + '_ANGLE{0}'.format(idx_an) label += r'{0:<04.2}$'.format(an) - plot_utils.plot_multinest( + plot_utils.plot_statistic( data = data[idx_scen][idx_an][:,1:], outfile = outfile, outformat = ['png'], @@ -277,200 +323,6 @@ def main(): label = label ) - # dirname = os.path.dirname(out) - # plot_utils.bayes_factor_plot( - # dirname=dirname, outfile=out, outformat=['png'], args=args - # ) - - # out = args.angles_lim_output+'/fr_an_evidence' + misc_utils.gen_identifier(args) - # if args.run_angles_limit: - # import pymultinest - - # scenarios = [ - # [np.sin(np.pi/2.)**2, 0, 0, 0], - # [0, np.cos(np.pi/2.)**4, 0, 0], - # [0, 0, np.sin(np.pi/2.)**2, 0], - # ] - # p = llh_paramset.from_tag([ParamTag.SCALE, ParamTag.MMANGLES], invert=True) - # n_params = len(p) - # prior_ranges = p.seeds - - # if not args.run_llh and args.likelihood is Likelihood.GOLEMFIT: - # fitter = gf_utils.setup_fitter(args, asimov_paramset) - # else: fitter = None - - # def CubePrior(cube, ndim, nparams): - # # default are uniform priors - # return ; - - # if args.bayes_eval_bin is not None: - # data = np.zeros((len(scenarios), 1, 2)) - # else: data = np.zeros((len(scenarios), args.bayes_bins, 2)) - # mm_angles = llh_paramset.from_tag(ParamTag.MMANGLES) - # sc_angles = llh_paramset.from_tag(ParamTag.SCALE)[0] - # for idx, scen in enumerate(scenarios): - # scales, evidences = [], [] - # for yidx, an in enumerate(mm_angles): - # an.value = scen[yidx] - # for s_idx, sc in enumerate(scan_scales): - # if args.bayes_eval_bin is not None: - # if s_idx in args.bayes_eval_bin: - # if idx == 0: - # out += '_scale_{0:.0E}'.format(np.power(10, sc)) - # else: continue - - # print '== SCALE = {0:.0E}'.format(np.power(10, sc)) - # sc_angles.value = sc - # def lnProb(cube, ndim, nparams): - # for i in range(ndim): - # prange = prior_ranges[i][1] - prior_ranges[i][0] - # p[i].value = prange*cube[i] + prior_ranges[i][0] - # for name in p.names: - # mcmc_paramset[name].value = p[name].value - # theta = mcmc_paramset.values - # # print 'theta', theta - # # print 'mcmc_paramset', mcmc_paramset - # return llh_utils.triangle_llh( - # theta=theta, - # args=args, - # asimov_paramset=asimov_paramset, - # mcmc_paramset=mcmc_paramset, - # fitter=fitter - # ) - # prefix = 'mnrun/' + os.path.basename(out) + '_' - # if args.bayes_eval_bin is not None: - # prefix += '{0}_{1}_'.format(idx, s_idx) - # print 'begin running evidence calculation for {0}'.format(prefix) - # result = pymultinest.run( - # LogLikelihood=lnProb, - # Prior=CubePrior, - # n_dims=n_params, - # importance_nested_sampling=True, - # n_live_points=args.bayes_live_points, - # evidence_tolerance=args.bayes_tolerance, - # outputfiles_basename=prefix, - # resume=False, - # verbose=True - # ) - - # analyzer = pymultinest.Analyzer(outputfiles_basename=prefix, n_params=n_params) - # a_lnZ = analyzer.get_stats()['global evidence'] - # print 'Evidence = {0}'.format(a_lnZ) - # scales.append(sc) - # evidences.append(a_lnZ) - - # for i, d in enumerate(evidences): - # data[idx][i][0] = scales[i] - # data[idx][i][1] = d - - # misc_utils.make_dir(out) - # print 'saving to {0}.npy'.format(out) - # np.save(out+'.npy', np.array(data)) - - # dirname = os.path.dirname(out) - # plot_utils.plot_BSM_angles_limit( - # dirname=dirname, outfile=outfile, outformat=['png'], - # args=args, bayesian=True - # ) - - # out = args.angles_corr_output+'/fr_co_evidence' + misc_utils.gen_identifier(args) - # if args.run_angles_correlation: - # if args.bayes_eval_bin is None: assert 0 - # import pymultinest - - # scenarios = [ - # [1, 0, 0, 0], - # [0, 1, 0, 0], - # [0, 0, 1, 0], - # ] - # nuisance = mcmc_paramset.from_tag(ParamTag.NUISANCE) - # mm_angles = mcmc_paramset.from_tag(ParamTag.MMANGLES) - # sc_angles = mcmc_paramset.from_tag(ParamTag.SCALE)[0] - - # if not args.run_mcmc and args.likelihood is Likelihood.GOLEMFIT: - # fitter = gf_utils.setup_fitter(args, asimov_paramset) - # else: fitter = None - - # def CubePrior(cube, ndim, nparams): - # # default are uniform priors - # return ; - - # scan_angles = np.linspace(0, 1, args.bayes_bins) - - # if args.bayes_eval_bin is not None: - # data = np.zeros((len(scenarios), 1, 1, 3)) - # else: data = np.zeros((len(scenarios), args.bayes_bins, args.bayes_bins, 3)) - # for idx, scen in enumerate(scenarios): - # for an in mm_angles: - # an.value = 0 - # keep = mcmc_paramset.from_tag(ParamTag.MMANGLES)[idx] - # q = ParamSet(nuisance.params + [x for x in mm_angles if x.name != keep.name]) - # n_params = len(q) - # prior_ranges = q.seeds - - # scales, angles, evidences = [], [], [] - # for s_idx, sc in enumerate(scan_scales): - # for a_idx, an in enumerate(scan_angles): - # index = s_idx*args.bayes_bins + a_idx - # if args.bayes_eval_bin is not None: - # if index in args.bayes_eval_bin: - # if idx == 0: - # out += '_idx_{0}'.format(index) - # else: continue - - # print '== SCALE = {0:.0E}'.format(np.power(10, sc)) - # print '== ANGLE = {0:.2f}'.format(an) - # sc_angles.value = sc - # keep.value = an - # def lnProb(cube, ndim, nparams): - # for i in range(ndim-1): - # prange = prior_ranges[i][1] - prior_ranges[i][0] - # q[i].value = prange*cube[i] + prior_ranges[i][0] - # for name in q.names: - # mcmc_paramset[name].value = q[name].value - # theta = mcmc_paramset.values - # # print 'theta', theta - # # print 'mcmc_paramset', mcmc_paramset - # return llh_utils.triangle_llh( - # theta=theta, - # args=args, - # asimov_paramset=asimov_paramset, - # mcmc_paramset=mcmc_paramset, - # fitter=fitter - # ) - # prefix = 'mnrun/' + os.path.basename(out) + '_' - # if args.bayes_eval_bin is not None: - # prefix += '{0}_{1}_{2}'.format(idx, s_idx, a_idx) - - # print 'begin running evidence calculation for {0}'.format(prefix) - # result = pymultinest.run( - # LogLikelihood=lnProb, - # Prior=CubePrior, - # n_dims=n_params, - # importance_nested_sampling=True, - # n_live_points=args.bayes_live_points, - # evidence_tolerance=args.bayes_tolerance, - # outputfiles_basename=prefix, - # resume=False, - # verbose=True - # ) - - # analyzer = pymultinest.Analyzer(outputfiles_basename=prefix, n_params=n_params) - # a_lnZ = analyzer.get_stats()['global evidence'] - # print 'Evidence = {0}'.format(a_lnZ) - # scales.append(sc) - # angles.append(an) - # evidences.append(a_lnZ) - - # for i, d in enumerate(evidences): - # data[idx][i][i][0] = scales[i] - # data[idx][i][i][1] = angles[i] - # data[idx][i][i][2] = d - - # misc_utils.make_dir(out) - # print 'saving to {0}.npy'.format(out) - # np.save(out+'.npy', np.array(data)) - main.__doc__ = __doc__ |
