diff options
Diffstat (limited to 'submitter/make_dag.py')
| -rw-r--r-- | submitter/make_dag.py | 241 |
1 files changed, 0 insertions, 241 deletions
diff --git a/submitter/make_dag.py b/submitter/make_dag.py deleted file mode 100644 index 0e41c9a..0000000 --- a/submitter/make_dag.py +++ /dev/null @@ -1,241 +0,0 @@ -#! /usr/bin/env python - -import os -import numpy as np - -a_fr = (1, 2, 0) -b_fr = (1, 0, 0) -c_fr = (0, 1, 0) -d_fr = (0, 0, 1) -e_fr = (1, 1, 1) -f_fr = (2, 1, 0) -g_fr = (1, 1, 0) - -full_scan_mfr = [ - # (1, 1, 1), (1, 1, 0) -] - -fix_sfr_mfr = [ - (1, 1, 1, 1, 2, 0), - (1, 1, 1, 1, 0, 0), - (1, 1, 1, 0, 1, 0), - (1, 1, 1, 0, 0, 1), - # (1, 1, 0, 1, 2, 0), - # (1, 1, 0, 1, 0, 0), - # (1, 1, 0, 0, 1, 0), - # (1, 0, 0, 1, 0, 0), - # (0, 1, 0, 0, 1, 0), - # (1, 2, 0, 1, 2, 0), - # (1, 2, 0, 0, 1, 0), -] - -# MCMC -run_mcmc = 'True' -burnin = 2500 -nsteps = 10000 -nwalkers = 60 -seed = 'None' -threads = 1 -mcmc_seed_type = 'uniform' - -# FR -dimension = [3, 6] -energy = [1e6] -no_bsm = 'False' -sigma_ratio = ['0.01'] -scale = "1E-20 1E-30" -scale_region = "1E10" -energy_dependance = 'spectral' -spectral_index = -2 -binning = [1e4, 1e7, 5] -fix_mixing = 'False' -fix_mixing_almost = 'False' - -# Likelihood -likelihood = 'gaussian' - -# Nuisance -convNorm = 1. -promptNorm = 0. -muonNorm = 1. -astroNorm = 6.9 -astroDeltaGamma = 2.5 - -# GolemFit -ast = 'p2_0' -data = 'real' - -# Bayes Factor -run_bayes_factor = 'False' -run_angles_limit = 'False' -run_angles_correlation = 'False' -bayes_bins = 100 -bayes_live_points = 3000 -bayes_tolerance = 0.01 -bayes_eval_bin = 'all' # set to 'all' to run normally - -# Plot -plot_angles = 'True' -plot_elements = 'False' -plot_bayes = 'False' -plot_angles_limit = 'False' - -outfile = 'dagman_FR.submit' -golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit' -condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/submit.sub' - -if bayes_eval_bin != 'all': - if run_angles_correlation == 'True': - b_runs = bayes_bins**2 - else: - b_runs = bayes_bins -else: b_runs = 1 - -with open(outfile, 'w') as f: - job_number = 1 - for dim in dimension: - print 'dimension', dim - for en in energy: - print 'energy {0:.0E}'.format(en) - - if energy_dependance == 'mono': - outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/{2:.0E}'.format(likelihood, dim, en) - elif energy_dependance == 'spectral': - outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/SI_{2}'.format(likelihood, dim, spectral_index) - - bayes_output = 'None' - angles_lim_output = 'None' - angles_corr_output = 'None' - for sig in sigma_ratio: - print 'sigma', sig - for frs in fix_sfr_mfr: - print frs - outchains = outchain_head + '/fix_ifr/{0}/'.format(str(sig).replace('.', '_')) - if run_bayes_factor == 'True': - bayes_output = outchains + '/bayes_factor/' - if run_angles_limit == 'True': - angles_lim_output = outchains + '/angles_limit/' - if run_angles_correlation == 'True': - angles_corr_output = outchains + '/angles_corr/' - outchains += 'mcmc_chain' - for r in range(b_runs): - print 'run', r - f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script)) - f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0])) - f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1])) - f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2])) - f.write('VARS\tjob{0}\tsigma_ratio="{1}"\n'.format(job_number, sig)) - f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, 'True')) - f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, frs[3])) - f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, frs[4])) - f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, frs[5])) - f.write('VARS\tjob{0}\tfix_scale="{1}"\n'.format(job_number, 'False')) - f.write('VARS\tjob{0}\tscale="{1}"\n'.format(job_number, 0)) - f.write('VARS\tjob{0}\tscale_region="{1}"\n'.format(job_number, scale_region)) - f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim)) - f.write('VARS\tjob{0}\tenergy="{1}"\n'.format(job_number, en)) - f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood)) - f.write('VARS\tjob{0}\tburnin="{1}"\n'.format(job_number, burnin)) - f.write('VARS\tjob{0}\tnwalkers="{1}"\n'.format(job_number, nwalkers)) - f.write('VARS\tjob{0}\tnsteps="{1}"\n'.format(job_number, nsteps)) - f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains)) - f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, fix_mixing)) - f.write('VARS\tjob{0}\tno_bsm="{1}"\n'.format(job_number, no_bsm)) - f.write('VARS\tjob{0}\trun_mcmc="{1}"\n'.format(job_number, run_mcmc)) - f.write('VARS\tjob{0}\tastroDeltaGamma="{1}"\n'.format(job_number, astroDeltaGamma)) - f.write('VARS\tjob{0}\tastroNorm="{1}"\n'.format(job_number, astroNorm)) - f.write('VARS\tjob{0}\tconvNorm="{1}"\n'.format(job_number, convNorm)) - f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm)) - f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm)) - f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data)) - f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast)) - f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles)) - f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements)) - f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed)) - f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads)) - f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type)) - f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance)) - f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index)) - f.write('VARS\tjob{0}\tbinning_0="{1}"\n'.format(job_number, binning[0])) - f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1])) - f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2])) - f.write('VARS\tjob{0}\tfix_mixing_almost="{1}"\n'.format(job_number, fix_mixing_almost)) - # f.write('VARS\tjob{0}\trun_bayes_factor="{1}"\n'.format(job_number, run_bayes_factor)) - # f.write('VARS\tjob{0}\tbayes_bins="{1}"\n'.format(job_number, bayes_bins)) - # f.write('VARS\tjob{0}\tbayes_output="{1}"\n'.format(job_number, bayes_output)) - # f.write('VARS\tjob{0}\tbayes_live_points="{1}"\n'.format(job_number, bayes_live_points)) - # f.write('VARS\tjob{0}\tbayes_tolerance="{1}"\n'.format(job_number, bayes_tolerance)) - # f.write('VARS\tjob{0}\tplot_bayes="{1}"\n'.format(job_number, plot_bayes)) - # f.write('VARS\tjob{0}\tbayes_eval_bin="{1}"\n'.format(job_number, r)) - # f.write('VARS\tjob{0}\trun_angles_limit="{1}"\n'.format(job_number, run_angles_limit)) - # f.write('VARS\tjob{0}\tangles_lim_output="{1}"\n'.format(job_number, angles_lim_output)) - # f.write('VARS\tjob{0}\tplot_angles_limit="{1}"\n'.format(job_number, plot_angles_limit)) - # f.write('VARS\tjob{0}\trun_angles_correlation="{1}"\n'.format(job_number, run_angles_correlation)) - # f.write('VARS\tjob{0}\tangles_corr_output="{1}"\n'.format(job_number, angles_corr_output)) - job_number += 1 - - for frs in full_scan_mfr: - print frs - outchains = outchain_head + '/full_scan/{0}'.format(str(sig).replace('.', '_')) - if run_bayes_factor == 'True': - bayes_output = outchains + '/bayes_factor/' - if run_angles_limit == 'True': - angles_lim_output = outchains + '/angles_limit/' - if run_angles_correlation == 'True': - angles_corr_output = outchains + '/angles_corr/' - outchains += 'mcmc_chain' - for r in range(b_runs): - print 'run', r - f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script)) - f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0])) - f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1])) - f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2])) - f.write('VARS\tjob{0}\tsigma_ratio="{1}"\n'.format(job_number, sig)) - f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, 'False')) - f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0)) - f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0)) - f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0)) - f.write('VARS\tjob{0}\tfix_scale="{1}"\n'.format(job_number, 'False')) - f.write('VARS\tjob{0}\tscale="{1}"\n'.format(job_number, 0)) - f.write('VARS\tjob{0}\tscale_region="{1}"\n'.format(job_number, scale_region)) - f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim)) - f.write('VARS\tjob{0}\tenergy="{1}"\n'.format(job_number, en)) - f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood)) - f.write('VARS\tjob{0}\tburnin="{1}"\n'.format(job_number, burnin)) - f.write('VARS\tjob{0}\tnwalkers="{1}"\n'.format(job_number, nwalkers)) - f.write('VARS\tjob{0}\tnsteps="{1}"\n'.format(job_number, nsteps)) - f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains)) - f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, fix_mixing)) - f.write('VARS\tjob{0}\tno_bsm="{1}"\n'.format(job_number, no_bsm)) - f.write('VARS\tjob{0}\trun_mcmc="{1}"\n'.format(job_number, run_mcmc)) - f.write('VARS\tjob{0}\tastroDeltaGamma="{1}"\n'.format(job_number, astroDeltaGamma)) - f.write('VARS\tjob{0}\tastroNorm="{1}"\n'.format(job_number, astroNorm)) - f.write('VARS\tjob{0}\tconvNorm="{1}"\n'.format(job_number, convNorm)) - f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm)) - f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm)) - f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data)) - f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast)) - f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles)) - f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements)) - f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed)) - f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads)) - f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type)) - f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance)) - f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index)) - f.write('VARS\tjob{0}\tbinning_0="{1}"\n'.format(job_number, binning[0])) - f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1])) - f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2])) - f.write('VARS\tjob{0}\tfix_mixing_almost="{1}"\n'.format(job_number, fix_mixing_almost)) - f.write('VARS\tjob{0}\trun_bayes_factor="{1}"\n'.format(job_number, run_bayes_factor)) - f.write('VARS\tjob{0}\tbayes_bins="{1}"\n'.format(job_number, bayes_bins)) - f.write('VARS\tjob{0}\tbayes_output="{1}"\n'.format(job_number, bayes_output)) - f.write('VARS\tjob{0}\tbayes_live_points="{1}"\n'.format(job_number, bayes_live_points)) - f.write('VARS\tjob{0}\tbayes_tolerance="{1}"\n'.format(job_number, bayes_tolerance)) - f.write('VARS\tjob{0}\tplot_bayes="{1}"\n'.format(job_number, plot_bayes)) - f.write('VARS\tjob{0}\tbayes_eval_bin="{1}"\n'.format(job_number, r)) - f.write('VARS\tjob{0}\trun_angles_limit="{1}"\n'.format(job_number, run_angles_limit)) - f.write('VARS\tjob{0}\tangles_lim_output="{1}"\n'.format(job_number, angles_lim_output)) - f.write('VARS\tjob{0}\tplot_angles_limit="{1}"\n'.format(job_number, plot_angles_limit)) - f.write('VARS\tjob{0}\trun_angles_correlation="{1}"\n'.format(job_number, run_angles_correlation)) - f.write('VARS\tjob{0}\tangles_corr_output="{1}"\n'.format(job_number, angles_corr_output)) - job_number += 1 |
