aboutsummaryrefslogtreecommitdiffstats
path: root/submitter/make_dag.py
diff options
context:
space:
mode:
Diffstat (limited to 'submitter/make_dag.py')
-rw-r--r--submitter/make_dag.py55
1 files changed, 39 insertions, 16 deletions
diff --git a/submitter/make_dag.py b/submitter/make_dag.py
index 735d213..641e00e 100644
--- a/submitter/make_dag.py
+++ b/submitter/make_dag.py
@@ -16,30 +16,30 @@ full_scan_mfr = [
]
fix_sfr_mfr = [
- (1, 1, 1, 1, 0, 0),
- (1, 1, 1, 0, 1, 0),
- (1, 1, 1, 0, 0, 1),
(1, 1, 1, 1, 2, 0),
- (1, 1, 0, 0, 1, 0),
- (1, 1, 0, 1, 2, 0),
- (1, 1, 0, 1, 0, 0),
- (1, 0, 0, 1, 0, 0),
- (0, 1, 0, 0, 1, 0),
- (1, 2, 0, 0, 1, 0),
- (1, 2, 0, 1, 2, 0)
+ # (1, 1, 0, 1, 2, 0),
+ # (1, 2, 0, 1, 2, 0),
+ # (1, 1, 1, 1, 0, 0),
+ # (1, 1, 0, 1, 0, 0),
+ # (1, 0, 0, 1, 0, 0),
+ # (1, 1, 1, 0, 1, 0),
+ # (1, 1, 0, 0, 1, 0),
+ # (0, 1, 0, 0, 1, 0),
+ # (1, 2, 0, 0, 1, 0),
+ # (1, 1, 1, 0, 0, 1),
]
# MCMC
-run_mcmc = 'True'
+run_mcmc = 'False'
burnin = 500
nsteps = 2000
nwalkers = 60
seed = 24
-threads = 4
+threads = 12
mcmc_seed_type = 'uniform'
# FR
-dimension = [4, 5, 7, 8]
+dimension = [3, 6]
energy = [1e6]
likelihood = 'golemfit'
no_bsm = 'False'
@@ -66,9 +66,15 @@ promptNorm = 0.
ast = 'p2_0'
data = 'real'
+# Bayes Factor
+run_bayes_factor = 'True'
+bayes_bins = 10
+bayes_live_points = 200
+
# Plot
-plot_angles = 'True'
+plot_angles = 'False'
plot_elements = 'False'
+plot_bayes = 'True'
outfile = 'dagman_FR.submit'
golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit'
@@ -86,11 +92,15 @@ with open(outfile, 'w') as f:
elif energy_dependance == 'spectral':
outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/SI_{2}'.format(likelihood, dim, spectral_index)
+ bayes_output = 'None'
for sig in sigma_ratio:
print 'sigma', sig
for frs in fix_sfr_mfr:
print frs
- outchains = outchain_head + '/fix_ifr/{0}/mcmc_chain'.format(str(sig).replace('.', '_'))
+ outchains = outchain_head + '/fix_ifr/{0}/'.format(str(sig).replace('.', '_'))
+ if run_bayes_factor == 'True':
+ bayes_output = outchains + '/bayes_factor/'
+ outchains += 'mcmc_chain'
f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
@@ -132,11 +142,19 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1]))
f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2]))
f.write('VARS\tjob{0}\tfix_mixing_almost="{1}"\n'.format(job_number, fix_mixing_almost))
+ f.write('VARS\tjob{0}\trun_bayes_factor="{1}"\n'.format(job_number, run_bayes_factor))
+ f.write('VARS\tjob{0}\tbayes_bins="{1}"\n'.format(job_number, bayes_bins))
+ f.write('VARS\tjob{0}\tbayes_output="{1}"\n'.format(job_number, bayes_output))
+ f.write('VARS\tjob{0}\tbayes_live_points="{1}"\n'.format(job_number, bayes_live_points))
+ f.write('VARS\tjob{0}\tplot_bayes="{1}"\n'.format(job_number, plot_bayes))
job_number += 1
# for frs in full_scan_mfr:
# print frs
- # outchains = outchain_head + '/full_scan/{0}/mcmc_chain'.format(str(sig).replace('.', '_'))
+ # outchains = outchain_head + '/full_scan/{0}'.format(str(sig).replace('.', '_'))
+ # if run_bayes_factor == 'True':
+ # bayes_output = outchains + '/bayes_factor/'
+ # outchains += 'mcmc_chain'
# f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
# f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
# f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
@@ -178,4 +196,9 @@ with open(outfile, 'w') as f:
# f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1]))
# f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2]))
# f.write('VARS\tjob{0}\tfix_mixing_almost="{1}"\n'.format(job_number, fix_mixing_almost))
+ # f.write('VARS\tjob{0}\trun_bayes_factor="{1}"\n'.format(job_number, run_bayes_factor))
+ # f.write('VARS\tjob{0}\tbayes_bins="{1}"\n'.format(job_number, bayes_bins))
+ # f.write('VARS\tjob{0}\tbayes_output="{1}"\n'.format(job_number, bayes_output))
+ # f.write('VARS\tjob{0}\tbayes_live_points="{1}"\n'.format(job_number, bayes_live_points))
+ # f.write('VARS\tjob{0}\tplot_bayes="{1}"\n'.format(job_number, plot_bayes))
# job_number += 1