aboutsummaryrefslogtreecommitdiffstats
path: root/submitter/sens_dag_source.py
diff options
context:
space:
mode:
Diffstat (limited to 'submitter/sens_dag_source.py')
-rw-r--r--submitter/sens_dag_source.py183
1 files changed, 0 insertions, 183 deletions
diff --git a/submitter/sens_dag_source.py b/submitter/sens_dag_source.py
deleted file mode 100644
index bdb5924..0000000
--- a/submitter/sens_dag_source.py
+++ /dev/null
@@ -1,183 +0,0 @@
-#! /usr/bin/env python
-
-import os
-import numpy as np
-
-full_scan_mfr = [
- # (1, 1, 1), (1, 2, 0)
-]
-
-bins = 5
-binning = np.linspace(0, 1, bins)
-grid = np.dstack(np.meshgrid(binning, binning)).reshape(bins*bins, 2)
-sources = []
-for x in grid:
- if x[0]+x[1] > 1:
- continue
- sources.append([x[0], x[1], 1-x[0]-x[1]])
-
-# fix_sfr_mfr = [
-# (1, 1, 1, 1, 2, 0),
-# (1, 1, 1, 1, 0, 0),
-# (1, 1, 1, 0, 1, 0),
-# # (1, 1, 1, 0, 0, 1),
-# # (1, 1, 0, 1, 2, 0),
-# # (1, 1, 0, 1, 0, 0),
-# # (1, 1, 0, 0, 1, 0),
-# # (1, 0, 0, 1, 0, 0),
-# # (0, 1, 0, 0, 1, 0),
-# # (1, 2, 0, 1, 2, 0),
-# # (1, 2, 0, 0, 1, 0),
-# ]
-fix_sfr_mfr = []
-for s in sources:
- fix_sfr_mfr.append((1, 1, 1, s[0], s[1], s[2]))
-print 'fix_sfr_mfr', fix_sfr_mfr
-print 'len(fix_sfr_mfr)', len(fix_sfr_mfr)
-
-GLOBAL_PARAMS = {}
-
-# Bayes Factor
-sens_eval_bin = 'true' # set to 'all' to run normally
-GLOBAL_PARAMS.update(dict(
- sens_run = 'True',
- run_method = 'fixed_angle', # full, fixed_angle, corr_angle
- stat_method = 'bayesian',
- sens_bins = 10,
- seed = None
-))
-
-# MultiNest
-GLOBAL_PARAMS.update(dict(
- # mn_live_points = 1000,
- # mn_live_points = 600,
- mn_live_points = 100,
- # mn_tolerance = 0.1,
- mn_tolerance = 0.3,
- mn_output = './mnrun'
-))
-
-# FR
-dimension = [6]
-# dimension = [3, 6]
-# dimension = [3, 4, 5, 6, 7, 8]
-GLOBAL_PARAMS.update(dict(
- threads = 1,
- binning = '6e4 1e7 20',
- no_bsm = 'False',
- scale_region = "1E10",
- energy_dependance = 'spectral',
- spectral_index = -2,
- fix_mixing = 'None',
- fix_mixing_almost = 'False',
- fold_index = 'True',
- save_measured_fr = 'False',
- output_measured_fr = './frs/'
-))
-
-# Likelihood
-GLOBAL_PARAMS.update(dict(
- likelihood = 'golemfit',
- sigma_ratio = '0.01'
-))
-
-# GolemFit
-GLOBAL_PARAMS.update(dict(
- ast = 'p2_0',
- data = 'real'
-))
-
-# Plot
-GLOBAL_PARAMS.update(dict(
- plot_statistic = 'True'
-))
-
-outfile = 'dagman_FR_SENS_{0}_{1}_{2}_{3}'.format(
- GLOBAL_PARAMS['stat_method'], GLOBAL_PARAMS['run_method'],
- GLOBAL_PARAMS['likelihood'], GLOBAL_PARAMS['data']
-)
-# outfile += '_seed2'
-# outfile += '_tol03'
-# outfile += '_NULL'
-# outfile += '_prior'
-# outfile += '_strictprior'
-# outfile += '_noprior'
-outfile += '_sourcescan'
-outfile += '.submit'
-golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit'
-condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/sens_submit.sub'
-
-if sens_eval_bin.lower() != 'all':
- if GLOBAL_PARAMS['run_method'].lower() == 'corr_angle':
- raise NotImplementedError
- sens_runs = GLOBAL_PARAMS['sens_bins']**2
- else:
- sens_runs = GLOBAL_PARAMS['sens_bins'] + 1
-else: sens_runs = 1
-
-with open(outfile, 'w') as f:
- job_number = 1
- for dim in dimension:
- print 'dimension', dim
- outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}'.format(
- GLOBAL_PARAMS['likelihood'], dim
- )
- for frs in fix_sfr_mfr:
- print 'frs', frs
- output = outchain_head + '/fix_ifr/'
- if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
- output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
- # output += 'seed2/'
- # output += 'mn_noverlap/'
- # output += 'tol_03/'
- # output += 'prior/'
- # output += 'strictprior/'
- # output += 'noprior/'
- output += 'sourcescan/'
- for r in xrange(sens_runs):
- print 'run', r
- f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
- f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
- f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
- f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
- f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
- f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, True))
- f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, frs[3]))
- f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, frs[4]))
- f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, frs[5]))
- if sens_eval_bin.lower() != 'all':
- f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
- else:
- f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all'))
- for key in GLOBAL_PARAMS.iterkeys():
- f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
- f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output))
- job_number += 1
- # break
-
- # for frs in full_scan_mfr:
- # print 'frs', frs
- # output = outchain_head + '/full/'
- # if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
- # output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
- # for r in xrange(sens_runs):
- # print 'run', r
- # f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
- # f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
- # f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
- # f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
- # f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
- # f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False))
- # f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
- # f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
- # f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
- # if sens_eval_bin.lower() != 'all':
- # f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
- # else:
- # f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all'))
- # for key in GLOBAL_PARAMS.iterkeys():
- # f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
- # f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output))
- # job_number += 1
-
- print 'dag file = {0}'.format(outfile)