aboutsummaryrefslogtreecommitdiffstats
path: root/test/test_all_gf.py
diff options
context:
space:
mode:
Diffstat (limited to 'test/test_all_gf.py')
-rw-r--r--test/test_all_gf.py79
1 files changed, 0 insertions, 79 deletions
diff --git a/test/test_all_gf.py b/test/test_all_gf.py
deleted file mode 100644
index 04b0980..0000000
--- a/test/test_all_gf.py
+++ /dev/null
@@ -1,79 +0,0 @@
-import numpy as np
-import matplotlib as mpl
-mpl.use('Agg')
-import matplotlib.pyplot as plt
-
-import GolemFitPy as gf
-
-FASTMODE = True
-PARAMETERS = [
- # 'astroFlavorAngle1', 'astroFlavorAngle2',
- 'convNorm',
- # 'promptNorm', 'muonNorm', 'astroNorm'
-]
-DEFAULTS = [
- # 4/9., 0., 1., 0., 1., 6.9
- 1.
-]
-RANGES = [
- # (0, 1), (-1, 1), (0.01, 10), (0., 30), (0.01, 10), (0.01, 30)
- (0.01, 10)
-]
-BINS = 50
-
-def steering_params():
- steering_categ = 'p2_0'
- params = gf.SteeringParams(gf.sampleTag.HESE)
- if FASTMODE:
- params.fastmode = True
- params.quiet = False
- params.simToLoad= steering_categ.lower()
- return params
-
-def set_up_as(fitter, params):
- print 'Injecting the model', params
- asimov_params = gf.FitParameters(gf.sampleTag.HESE)
- for x in params.iterkeys():
- asimov_params.__setattr__(x, float(params[x]))
- fitter.SetupAsimov(asimov_params)
- priors = gf.Priors()
- priors.convNormWidth = 9e9
- fitter.SetFitPriors(priors)
-
-def setup_fitter(asimov_paramset):
- datapaths = gf.DataPaths()
- sparams = steering_params()
- npp = gf.NewPhysicsParams()
- fitter = gf.GolemFit(datapaths, sparams, npp)
- set_up_as(fitter, asimov_paramset)
- return fitter
-
-def get_llh(fitter, params):
- fitparams = gf.FitParameters(gf.sampleTag.HESE)
- for x in params.iterkeys():
- fitparams.__setattr__(x, float(params[x]))
- llh = -fitter.EvalLLH(fitparams)
- return llh
-
-for ip, param in enumerate(PARAMETERS):
- asimov_paramset = {param: DEFAULTS[ip]}
- print 'injecting', asimov_paramset
- fitter = setup_fitter(asimov_paramset)
- binning = np.linspace(RANGES[ip][0], RANGES[ip][1], BINS)
- llhs = []
- for b in binning:
- test_paramset = {param: b}
- print 'testing', test_paramset
- llh = get_llh(fitter, test_paramset)
- print 'llh', llh
- llhs.append(llh)
- plt.plot(binning, llhs)
- plt.axvline(x=DEFAULTS[ip])
- plt.xlabel(param)
- plt.ylabel('LLH')
- outfile = 'llh_profile_noprior_'
- if FASTMODE:
- plt.savefig(outfile + 'fastmode_{0}.png'.format(param))
- else:
- plt.savefig(outfile + '{0}.png'.format(param))
- plt.clf()