diff options
Diffstat (limited to 'utils/fr.py')
| -rw-r--r-- | utils/fr.py | 353 |
1 files changed, 353 insertions, 0 deletions
diff --git a/utils/fr.py b/utils/fr.py new file mode 100644 index 0000000..ddcb5d2 --- /dev/null +++ b/utils/fr.py @@ -0,0 +1,353 @@ +# author : S. Mandalia +# s.p.mandalia@qmul.ac.uk +# +# date : March 17, 2018 + +""" +Useful functions for the BSM flavour ratio analysis +""" + +from __future__ import absolute_import, division + +import sys + +import numpy as np +from scipy import linalg + + +MASS_EIGENVALUES = [7.40E-23, 2.515E-21] +"""SM mass eigenvalues""" + + +def angles_to_fr(src_angles): + """Convert angular projection of the source flavour ratio back into the + flavour ratio. + + Parameters + ---------- + src_angles : list, length = 2 + sin(phi)^4 and cos(psi)^2 + + Returns + ---------- + flavour ratios (nue, numu, nutau) + + Examples + ---------- + >>> print angles_to_fr((0.3, 0.4)) + (0.38340579025361626, 0.16431676725154978, 0.45227744249483393) + + """ + sphi4, c2psi = src_angles + + psi = (0.5)*np.arccos(c2psi) + + sphi2 = np.sqrt(sphi4) + cphi2 = 1. - sphi2 + spsi2 = np.sin(psi)**2 + cspi2 = 1. - spsi2 + + x = sphi2*cspi2 + y = sphi2*spsi2 + z = cphi2 + return x, y, z + + +def angles_to_u(bsm_angles): + """Convert angular projection of the mixing matrix elements back into the + mixing matrix elements. + + Parameters + ---------- + bsm_angles : list, length = 4 + sin(12)^2, cos(13)^4, sin(23)^2 and deltacp + + Returns + ---------- + unitary numpy ndarray of shape (3, 3) + + Examples + ---------- + >>> from fr import angles_to_u + >>> print angles_to_u((0.2, 0.3, 0.5, 1.5)) + array([[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ], + [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ], + [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]]) + + """ + s12_2, c13_4, s23_2, dcp = bsm_angles + dcp = np.complex128(dcp) + + c12_2 = 1. - s12_2 + c13_2 = np.sqrt(c13_4) + s13_2 = 1. - c13_2 + c23_2 = 1. - s23_2 + + t12 = np.arcsin(np.sqrt(s12_2)) + t13 = np.arccos(np.sqrt(c13_2)) + t23 = np.arcsin(np.sqrt(s23_2)) + + c12 = np.cos(t12) + s12 = np.sin(t12) + c13 = np.cos(t13) + s13 = np.sin(t13) + c23 = np.cos(t23) + s23 = np.sin(t23) + + p1 = np.array([[1 , 0 , 0] , [0 , c23 , s23] , [0 , -s23 , c23]] , dtype=np.complex128) + p2 = np.array([[c13 , 0 , s13*np.exp(-1j*dcp)] , [0 , 1 , 0] , [-s13*np.exp(1j*dcp) , 0 , c13]] , dtype=np.complex128) + p3 = np.array([[c12 , s12 , 0] , [-s12 , c12 , 0] , [0 , 0 , 1]] , dtype=np.complex128) + + u = np.dot(np.dot(p1, p2), p3) + return u + + +def cardano_eqn(ham): + """Diagonalise the effective Hamiltonian 3x3 matrix into the form + h_{eff} = UE_{eff}U^{dagger} using the procedure in PRD91, 052003 (2015). + + Parameters + ---------- + ham : numpy ndarray of shape (3, 3) + sin(12)^2, cos(13)^4, sin(23)^2 and deltacp + + Returns + ---------- + unitary numpy ndarray of shape (3, 3) + + Examples + ---------- + >>> import numpy as np + >>> from fr import cardano_eqn + >>> ham = np.array( + >>> [[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ], + >>> [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ], + >>> [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]] + >>> ) + >>> print cardano_eqn(ham) + array([[-0.11143379-0.58863683j, -0.09067747-0.48219068j, 0.34276625-0.08686465j], + [ 0.14835519+0.47511473j, -0.18299305+0.40777481j, 0.31906300+0.82514223j], + [-0.62298966+0.07231745j, -0.61407815-0.42709603j, 0.03660313+0.30160428j]]) + + """ + if np.shape(ham) != (3, 3): + raise ValueError( + 'Input matrix should be a square and dimension 3, ' + 'got\n{0}'.format(ham) + ) + + a = -np.trace(ham) + b = (0.5) * ((np.trace(ham))**2 - np.trace(np.dot(ham, ham))) + c = -linalg.det(ham) + + Q = (1/9.) * (a**2 - 3*b) + R = (1/54.) * (2*a**3 - 9*a*b + 27*c) + theta = np.arccos(R / np.sqrt(Q**3)) + + E1 = -2 * np.sqrt(Q) * np.cos(theta/3.) - (1/3.)*a + E2 = -2 * np.sqrt(Q) * np.cos((theta - 2.*np.pi)/3.) - (1/3.)*a + E3 = -2 * np.sqrt(Q) * np.cos((theta + 2.*np.pi)/3.) - (1/3.)*a + + A1 = ham[1][2] * (ham[0][0] - E1) - ham[1][0]*ham[0][2] + A2 = ham[1][2] * (ham[0][0] - E2) - ham[1][0]*ham[0][2] + A3 = ham[1][2] * (ham[0][0] - E3) - ham[1][0]*ham[0][2] + + B1 = ham[2][0] * (ham[1][1] - E1) - ham[2][1]*ham[1][0] + B2 = ham[2][0] * (ham[1][1] - E2) - ham[2][1]*ham[1][0] + B3 = ham[2][0] * (ham[1][1] - E3) - ham[2][1]*ham[1][0] + + C1 = ham[1][0] * (ham[2][2] - E1) - ham[1][2]*ham[2][0] + C2 = ham[1][0] * (ham[2][2] - E2) - ham[1][2]*ham[2][0] + C3 = ham[1][0] * (ham[2][2] - E3) - ham[1][2]*ham[2][0] + + N1 = np.sqrt(abs(A1*B1)**2 + abs(A1*C1)**2 + abs(B1*C1)**2) + N2 = np.sqrt(abs(A2*B2)**2 + abs(A2*C2)**2 + abs(B2*C2)**2) + N3 = np.sqrt(abs(A3*B3)**2 + abs(A3*C3)**2 + abs(B3*C3)**2) + + mm = np.array([ + [np.conjugate(B1)*C1 / N1, np.conjugate(B2)*C2 / N2, np.conjugate(B3)*C3 / N3], + [A1*C1 / N1, A2*C2 / N2, A3*C3 / N3], + [A1*B1 / N1, A2*B2 / N2, A3*B3 / N3] + ]) + return mm + + +def normalise_fr(fr): + """Normalise an input flavour combination to a flavour ratio. + + Parameters + ---------- + fr : list, length = 3 + flavour combination + + Returns + ---------- + numpy ndarray flavour ratio + + Examples + ---------- + >>> from fr import normalise_fr + >>> print normalise_fr((1, 2, 3)) + array([ 0.16666667, 0.33333333, 0.5 ]) + + """ + return np.array(fr) / float(np.sum(fr)) + + +NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935)) +"""NuFIT mixing matrix (s_12^2, c_13^4, s_23^2, dcp)""" + + +def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES, + nufit_u=NUFIT_U, no_bsm=False, fix_mixing=False, + fix_scale=False, scale=None, check_uni=True): + """Construct the BSM mixing matrix from the BSM parameters. + + Parameters + ---------- + theta : list, length > 3 + BSM parameters + + dim : int + Dimension of BSM physics + + energy : float + Energy in GeV + + mass_eigenvalues : list, length = 2 + SM mass eigenvalues + + nufit_u : numpy ndarray, dimension 3 + SM NuFIT mixing matrix + + no_bsm : bool + Turn off BSM behaviour + + fix_mixing : bool + Fix the BSM mixing angles + + fix_scale : bool + Fix the BSM scale + + scale : float + Used with fix_scale - scale at which to fix + + check_uni : bool + Check the resulting BSM mixing matrix is unitary + + Returns + ---------- + unitary numpy ndarray of shape (3, 3) + + Examples + ---------- + >>> from fr import params_to_BSMu + >>> print params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), dim=3, energy=1000) + array([[ 0.18658169 -6.34190523e-01j, -0.26460391 +2.01884200e-01j, 0.67247096 -9.86808417e-07j], + [-0.50419832 +2.14420570e-01j, -0.36013768 +5.44254868e-01j, 0.03700961 +5.22039894e-01j], + [-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]]) + + """ + if np.shape(nufit_u) != (3, 3): + raise ValueError( + 'Input matrix should be a square and dimension 3, ' + 'got\n{0}'.format(ham) + ) + + if fix_mixing: + s12_2, c13_4, s23_2, dcp, sc2 = 0.5, 1.0-1E-6, 0.5, 0., theta + elif fix_scale: + s12_2, c13_4, s23_2, dcp = theta + sc2 = np.log10(scale) + else: + s12_2, c13_4, s23_2, dcp, sc2 = theta + sc2 = np.power(10., sc2) + sc1 = sc2 / 100. + + mass_matrix = np.array( + [[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]] + ) + sm_ham = (1./(2*energy))*np.dot(nufit_u, np.dot(mass_matrix, nufit_u.conj().T)) + if no_bsm: + eg_vector = cardano_eqn(sm_ham) + else: + new_physics_u = angles_to_u((s12_2, c13_4, s23_2, dcp)) + scale_matrix = np.array( + [[0, 0, 0], [0, sc1, 0], [0, 0, sc2]] + ) + bsm_term = (energy**(dim-3)) * np.dot(new_physics_u, np.dot(scale_matrix, new_physics_u.conj().T)) + + bsm_ham = sm_ham + bsm_term + eg_vector = cardano_eqn(bsm_ham) + + if check_uni: + tu = test_unitarity(eg_vector) + if not abs(np.trace(tu) - 3.) < 1e-5 or \ + not abs(np.sum(tu) - 3.) < 1e-5: + raise AssertionError( + 'Matrix is not unitary!\neg_vector\n{0}\ntest ' + 'u\n{1}'.format(eg_vector, tu) + ) + return eg_vector + + +def test_unitarity(x, prnt=False): + """Test the unitarity of a matrix. + + Parameters + ---------- + x : numpy ndarray + Matrix to evaluate + + prnt : bool + Print the result + + Returns + ---------- + numpy ndarray + + Examples + ---------- + >>> from fr import test_unitarity + >>> x = np.identity(3) + >>> print test_unitarity(x) + array([[ 1., 0., 0.], + [ 0., 1., 0.], + [ 0., 0., 1.]]) + + """ + f = abs(np.dot(x, x.conj().T)) + if prnt: + print 'Unitarity test:\n{0}'.format(f) + return f + + +def u_to_fr(source_fr, matrix): + """Compute the observed flavour ratio assuming decoherence. + + Parameters + ---------- + source_fr : list, length = 3 + Source flavour ratio components + + matrix : numpy ndarray, dimension 3 + Mixing matrix + + Returns + ---------- + Measured flavour ratio + + Examples + ---------- + >>> from fr import params_to_BSMu, u_to_fr + >>> print u_to_fr((1, 2, 0), params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), 3, 1000)) + array([ 0.33740075, 0.33176584, 0.33083341]) + + """ + # TODO(shivesh): energy dependence + composition = np.einsum( + 'ai, bi, a -> b', abs(matrix)**2, abs(matrix)**2, source_fr + ) + ratio = composition / np.sum(source_fr) + return ratio + |
