aboutsummaryrefslogtreecommitdiffstats
path: root/utils/plot.py
diff options
context:
space:
mode:
Diffstat (limited to 'utils/plot.py')
-rw-r--r--utils/plot.py49
1 files changed, 28 insertions, 21 deletions
diff --git a/utils/plot.py b/utils/plot.py
index a24c69c..a659b78 100644
--- a/utils/plot.py
+++ b/utils/plot.py
@@ -21,7 +21,7 @@ from getdist import plots
from getdist import mcsamples
from utils import misc as misc_utils
-from utils.enums import ParamTag
+from utils.enums import Likelihood, ParamTag
from utils.fr import angles_to_u, angles_to_fr
rc('text', usetex=False)
@@ -68,40 +68,47 @@ def plot_Tchain(Tchain, axes_labels, ranges):
def gen_figtext(args):
"""Generate the figure text."""
+ t = ''
mr1, mr2, mr3 = args.measured_ratio
if args.fix_source_ratio:
sr1, sr2, sr3 = args.source_ratio
if args.fix_scale:
- return 'Source flavour ratio = [{0:.2f}, {1:.2f}, {2:.2f}]\nIC ' \
+ t += 'Source flavour ratio = [{0:.2f}, {1:.2f}, {2:.2f}]\nIC ' \
'observed flavour ratio = [{3:.2f}, {4:.2f}, ' \
- '{5:.2f}]\nSigma = {6:.3f}\nDimension = {7}\nEnergy = ' \
- '{8} GeV\nScale = {9}'.format(
- sr1, sr2, sr3, mr1, mr2, mr3, args.sigma_ratio,
- args.dimension, int(args.energy), args.scale
+ '{5:.2f}]\nDimension = {7}\nScale = {9}'.format(
+ sr1, sr2, sr3, mr1, mr2, mr3, args.dimension,
+ int(args.energy), args.scale
)
else:
- return 'Source flavour ratio = [{0:.2f}, {1:.2f}, {2:.2f}]\nIC ' \
+ t += 'Source flavour ratio = [{0:.2f}, {1:.2f}, {2:.2f}]\nIC ' \
'observed flavour ratio = [{3:.2f}, {4:.2f}, ' \
- '{5:.2f}]\nSigma = {6:.3f}\nDimension = {7}\nEnergy = {8} ' \
- 'GeV'.format(
- sr1, sr2, sr3, mr1, mr2, mr3, args.sigma_ratio,
- args.dimension, int(args.energy)
+ '{5:.2f}]\nDimension = {7}'.format(
+ sr1, sr2, sr3, mr1, mr2, mr3, args.dimension,
+ int(args.energy)
)
else:
if args.fix_scale:
- return 'IC observed flavour ratio = [{0:.2f}, {1:.2f}, ' \
- '{2:.2f}]\nSigma = {3:.3f}\nDimension = {4}\nEnergy = {5} ' \
- 'GeV\nScale = {6}'.format(
- mr1, mr2, mr3, args.sigma_ratio, args.dimension,
- int(args.energy), args.scale
+ t += 'IC observed flavour ratio = [{0:.2f}, {1:.2f}, ' \
+ '{2:.2f}]\nDimension = {4}\nScale = {6}'.format(
+ mr1, mr2, mr3, args.dimension, int(args.energy),
+ args.scale
)
else:
- return 'IC observed flavour ratio = [{0:.2f}, {1:.2f}, ' \
- '{2:.2f}]\nSigma = {3:.3f}\nDimension = {4}\nEnergy = {5} ' \
- 'GeV'.format(
- mr1, mr2, mr3, args.sigma_ratio, args.dimension,
- int(args.energy)
+ t += 'IC observed flavour ratio = [{0:.2f}, {1:.2f}, ' \
+ '{2:.2f}]\nDimension = {4}'.format(
+ mr1, mr2, mr3, args.dimension, int(args.energy)
)
+ if args.likelihood is Likelihood.GAUSSIAN:
+ t += '\nSigma = {0:.3f}'.format(args.sigma_ratio)
+ if args.energy_dependance is EnergyDependance.SPECTRAL:
+ t += '\nSpectral Index = {0}\nBinning = [{7}, {8}] GeV - {9} bins'.format(
+ int(args.spectral_index), int(10**args.binning[0]),
+ int(10**args.binning[1]), int(args.binning[2])
+ )
+ elif args.energy_dependance is EnergyDependance.MONO:
+ t += '\nEnergy = {0} GeV'.format(args.energy)
+ return t
+
def chainer_plot(infile, outfile, outformat, args, mcmc_paramset):
"""Make the triangle plot."""