From 2ca0c5597590e2043bd280dd8aee3d9d09bae29a Mon Sep 17 00:00:00 2001 From: shivesh Date: Sun, 22 Apr 2018 23:18:44 -0500 Subject: Sun Apr 22 23:18:44 CDT 2018 --- sens.py | 480 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 480 insertions(+) create mode 100755 sens.py (limited to 'sens.py') diff --git a/sens.py b/sens.py new file mode 100755 index 0000000..578528c --- /dev/null +++ b/sens.py @@ -0,0 +1,480 @@ +#! /usr/bin/env python +# author : S. Mandalia +# s.p.mandalia@qmul.ac.uk +# +# date : March 17, 2018 + +""" +HESE BSM flavour ratio analysis script +""" + +from __future__ import absolute_import, division + +import os +import argparse +from functools import partial + +import numpy as np +import numpy.ma as ma + +from utils import fr as fr_utils +from utils import gf as gf_utils +from utils import likelihood as llh_utils +from utils import misc as misc_utils +from utils import plot as plot_utils +from utils.enums import EnergyDependance, Likelihood, ParamTag +from utils.enums import SensitivityCateg, StatCateg +from utils.fr import estimate_scale, normalise_fr +from utils.misc import enum_parse, parse_bool +from utils.param import Param, ParamSet, get_paramsets + +from utils import multinest as mn_utils + + +def define_nuisance(): + """Define the nuisance parameters to scan over with default values, + ranges and sigma. + """ + tag = ParamTag.NUISANCE + nuisance = ParamSet( + Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0. , 50.], std=0.3, tag=tag), + Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 50.], std=0.05, tag=tag), + Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 50.], std=0.1, tag=tag), + Param(name='astroNorm', value=6.9, seed=[0.1, 10.], ranges=[0. , 50.], std=0.1, tag=tag), + Param(name='astroDeltaGamma', value=2.5, seed=[1. , 3. ], ranges=[-5., 5. ], std=0.1, tag=tag) + ) + return nuisance + + +def nuisance_argparse(parser): + nuisance_paramset = define_nuisance() + for parm in nuisance_paramset: + parser.add_argument( + '--'+parm.name, type=float, default=parm.value, + help=parm.name+' to inject' + ) + + +def process_args(args): + """Process the input args.""" + if args.fix_mixing and args.fix_scale: + raise NotImplementedError('Fixed mixing and scale not implemented') + if args.fix_mixing and args.fix_mixing_almost: + raise NotImplementedError( + '--fix-mixing and --fix-mixing-almost cannot be used together' + ) + if args.mn_run and args.fix_scale: + raise NotImplementedError( + '--mn-run and --fix-scale cannot be used together' + ) + + args.measured_ratio = normalise_fr(args.measured_ratio) + if args.fix_source_ratio: + args.source_ratio = normalise_fr(args.source_ratio) + + if args.energy_dependance is EnergyDependance.SPECTRAL: + args.binning = np.logspace( + np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1 + ) + + if not args.fix_scale: + args.scale = estimate_scale(args) + args.scale_region = (args.scale/args.scale_region, args.scale*args.scale_region) + + if args.mn_eval_bin.lower() == 'all': + args.mn_eval_bin = None + else: + args.mn_eval_bin = int(args.mn_eval_bin) + + +def parse_args(args=None): + """Parse command line arguments""" + parser = argparse.ArgumentParser( + description="BSM flavour ratio analysis", + formatter_class=misc_utils.SortingHelpFormatter, + ) + parser.add_argument( + '--seed', type=misc_utils.seed_parse, default='25', + help='Set the random seed value' + ) + parser.add_argument( + '--threads', type=misc_utils.thread_type, default='1', + help='Set the number of threads to use (int or "max")' + ) + parser.add_argument( + '--outfile', type=str, default='./untitled', + help='Path to output chains' + ) + parser.add_argument( + '--run-method', default='full', + type=partial(enum_parse, c=SensitivityCateg), choices=SensitivityCateg, + help='Choose which type of sensivity plot to make' + ) + parser.add_argument( + '--stat-method', default='bayesian', + type=partial(enum_parse, c=StatCateg), choices=StatCateg, + help='Statistical method to employ' + ) + fr_utils.fr_argparse(parser) + gf_utils.gf_argparse(parser) + llh_utils.likelihood_argparse(parser) + mn_utils.mn_argparse(parser) + nuisance_argparse(parser) + if args is None: return parser.parse_args() + else: return parser.parse_args(args.split()) + +def main(): + args = parse_args() + process_args(args) + misc_utils.print_args(args) + + if args.seed is not None: + np.random.seed(args.seed) + + asimov_paramset, llh_paramset = get_paramsets(args) + scale = llh_paramset.from_tag(ParamTag.SCALE)[0] + outfile = misc_utils.gen_outfile_name(args) + print '== {0:<25} = {1}'.format('outfile', outfile) + + mmangles = llh_paramset.from_tag(ParamTag.MMANGLES) + if args.run_method is SensitivityCateg.FULL: + mn_paramset_arr = [llh_paramset.from_tag(ParamTag.SCALE, invert=True)] + elif args.run_method is SensitivityCateg.FIXED_ANGLE or \ + args.run_method is SensitivityCateg.CORR_ANGLE: + nscale_pmset = llh_paramset.from_tag(ParamTag.SCALE, invert=True) + mn_paramset_arr = [] + for x in xrange(3): + mn_paramset_arr.append( + ParamSet([prms for prms in nscale_pmset + if mmangles[x].name != prms.name]) + ) + + out = args.outfile+'/{0}/{1}/fr_evidence'.format(args.stat_method, args.run_method) \ + + misc_utils.gen_identifier(args) + if args.mn_run: + if args.likelihood is Likelihood.GOLEMFIT: + fitter = gf_utils.setup_fitter(args, asimov_paramset) + else: fitter = None + + scan_scales = np.linspace( + np.log10(args.scale_region[0]), np.log10(args.scale_region[1]), args.mn_bins + ) + if args.run_method is SensitivityCateg.CORR_ANGLE: + scan_angles = np.linspace(0, 1, eval_dim) + else: scan_angles = np.array([0]) + print 'scan_scales', scan_scales + print 'scan_angles', scan_angles + + if args.mn_eval_bin is None: + eval_dim = args.mn_bins + else: eval_dim = 1 + + if args.run_method is SensitivityCateg.FULL: + evidence_arr = np.full((eval_dim, 2), np.nan) + elif args.run_method is SensitivityCateg.FIXED_ANGLE: + evidence_arr = np.full((len(mn_paramset_arr), eval_dim, 2), np.nan) + elif args.run_method is SensitivityCateg.CORR_ANGLE: + evidence_arr = np.full((len(mn_paramset_arr), eval_dim, eval_dim, 3), np.nan) + + + for idx_scen, mn_paramset in enumerate(mn_paramset_arr): + print '|||| SCENARIO = {0}'.format(idx_scen) + for x in mmangles: x.value = 0. + if args.run_method is SensitivityCateg.FIXED_ANGLE: + if idx_scen == 0 or idx_scen == 2: + mmangles[idx_scen].value = np.sin(np.pi/2.)**2 + """s_12^2 or s_23^2""" + elif idx_scen == 1: + mmangles[idx_scen].value = np.cos(np.pi/2.)**4 + """c_13^4""" + + for idx_an, an in enumerate(scan_angles): + if args.run_method is SensitivityCateg.CORR_ANGLE: + print '|||| ANGLE = {0:<04.2}'.format(an) + mmangles[idx_an].value = an + + for idx_sc, sc in enumerate(scan_scales): + if args.mn_eval_bin is not None: + if idx_sc == args.mn_eval_bin: + out += '_scale_{0:.0E}'.format(np.power(10, sc)) + if args.run_method is SensitivityCateg.CORR_ANGLE: + out += '_angle_{0:>03}'.format(int(an*100)) + break + else: continue + + print '|||| SCALE = {0:.0E}'.format(np.power(10, sc)) + scale.value = sc + try: + a_lnZ = mn_utils.mn_evidence( + mn_paramset = mn_paramset, + llh_paramset = llh_paramset, + asimov_paramset = asimov_paramset, + args = args, + fitter = fitter + ) + except: + print 'Failed run, continuing' + continue + print '## Evidence = {0}'.format(a_lnZ) + if args.run_method is SensitivityCateg.FULL: + evidence_arr[idx_sc] = np.array([sc, a_lnZ]) + elif args.run_method is SensitivityCateg.FIXED_ANGLE: + evidence_arr[idx_scen][idx_sc] = np.array([sc, a_lnZ]) + elif args.run_method is SensitivityCateg.CORR_ANGLE: + evidence_arr[idx_scen][idx_an][idx_sc] = np.array([an, sc, a_lnZ]) + + misc_utils.make_dir(out) + print 'Saving to {0}'.format(out+'.npy') + np.save(out+'.npy', np.array(evidence_arr)) + + if args.plot_multinest: + if args.mn_run: raw = evidence_arr + else: raw = np.load(out+'.npy') + data = ma.masked_invalid(raw, 0) + + basename = os.path.dirname(out) + '/mnrun/' + os.path.basename(out) + baseoutfile = basename[:5]+basename[5:].replace('data', 'plots') + if args.run_method is SensitivityCateg.FULL: + plot_utils.plot_multinest( + data = data, + outfile = baseoutfile, + outformat = ['png'], + args = args, + scale_param = scale + ) + elif args.run_method is SensitivityCateg.FIXED_ANGLE: + for idx_scen in xrange(len(mn_paramset_arr)): + print '|||| SCENARIO = {0}'.format(idx_scen) + outfile = baseoutfile + '_SCEN{0}'.format(idx_scen) + if idx_scen == 0: label = r'$\mathcal{O}_{12}=\frac{1}{2}$' + elif idx_scen == 1: label = r'$\mathcal{O}_{13}=\frac{1}{2}$' + elif idx_scen == 2: label = r'$\mathcal{O}_{23}=\frac{1}{2}$' + plot_utils.plot_multinest( + data = data[idx_scen], + outfile = outfile, + outformat = ['png'], + args = args, + scale_param = scale, + label = label + ) + elif args.run_method is SensitivityCateg.CORR_ANGLE: + for idx_scen in xrange(len(mn_paramset_arr)): + print '|||| SCENARIO = {0}'.format(idx_scen) + basescenoutfile = baseoutfile + '_SCEN{0}'.format(idx_scen) + if idx_scen == 0: label = r'$\mathcal{O}_{12}=' + elif idx_scen == 1: label = r'$\mathcal{O}_{13}=' + elif idx_scen == 2: label = r'$\mathcal{O}_{23}=' + for idx_an, an in enumerate(scan_angles): + print '|||| ANGLE = {0:<04.2}'.format(an) + outfile = basescenoutfile + '_ANGLE{0}'.format(idx_an) + label += r'{0:<04.2}$'.format(an) + plot_utils.plot_multinest( + data = data[idx_scen][idx_an][:,1:], + outfile = outfile, + outformat = ['png'], + args = args, + scale_param = scale, + label = label + ) + + # dirname = os.path.dirname(out) + # plot_utils.bayes_factor_plot( + # dirname=dirname, outfile=out, outformat=['png'], args=args + # ) + + # out = args.angles_lim_output+'/fr_an_evidence' + misc_utils.gen_identifier(args) + # if args.run_angles_limit: + # import pymultinest + + # scenarios = [ + # [np.sin(np.pi/2.)**2, 0, 0, 0], + # [0, np.cos(np.pi/2.)**4, 0, 0], + # [0, 0, np.sin(np.pi/2.)**2, 0], + # ] + # p = llh_paramset.from_tag([ParamTag.SCALE, ParamTag.MMANGLES], invert=True) + # n_params = len(p) + # prior_ranges = p.seeds + + # if not args.run_llh and args.likelihood is Likelihood.GOLEMFIT: + # fitter = gf_utils.setup_fitter(args, asimov_paramset) + # else: fitter = None + + # def CubePrior(cube, ndim, nparams): + # # default are uniform priors + # return ; + + # if args.bayes_eval_bin is not None: + # data = np.zeros((len(scenarios), 1, 2)) + # else: data = np.zeros((len(scenarios), args.bayes_bins, 2)) + # mm_angles = llh_paramset.from_tag(ParamTag.MMANGLES) + # sc_angles = llh_paramset.from_tag(ParamTag.SCALE)[0] + # for idx, scen in enumerate(scenarios): + # scales, evidences = [], [] + # for yidx, an in enumerate(mm_angles): + # an.value = scen[yidx] + # for s_idx, sc in enumerate(scan_scales): + # if args.bayes_eval_bin is not None: + # if s_idx in args.bayes_eval_bin: + # if idx == 0: + # out += '_scale_{0:.0E}'.format(np.power(10, sc)) + # else: continue + + # print '== SCALE = {0:.0E}'.format(np.power(10, sc)) + # sc_angles.value = sc + # def lnProb(cube, ndim, nparams): + # for i in range(ndim): + # prange = prior_ranges[i][1] - prior_ranges[i][0] + # p[i].value = prange*cube[i] + prior_ranges[i][0] + # for name in p.names: + # mcmc_paramset[name].value = p[name].value + # theta = mcmc_paramset.values + # # print 'theta', theta + # # print 'mcmc_paramset', mcmc_paramset + # return llh_utils.triangle_llh( + # theta=theta, + # args=args, + # asimov_paramset=asimov_paramset, + # mcmc_paramset=mcmc_paramset, + # fitter=fitter + # ) + # prefix = 'mnrun/' + os.path.basename(out) + '_' + # if args.bayes_eval_bin is not None: + # prefix += '{0}_{1}_'.format(idx, s_idx) + # print 'begin running evidence calculation for {0}'.format(prefix) + # result = pymultinest.run( + # LogLikelihood=lnProb, + # Prior=CubePrior, + # n_dims=n_params, + # importance_nested_sampling=True, + # n_live_points=args.bayes_live_points, + # evidence_tolerance=args.bayes_tolerance, + # outputfiles_basename=prefix, + # resume=False, + # verbose=True + # ) + + # analyzer = pymultinest.Analyzer(outputfiles_basename=prefix, n_params=n_params) + # a_lnZ = analyzer.get_stats()['global evidence'] + # print 'Evidence = {0}'.format(a_lnZ) + # scales.append(sc) + # evidences.append(a_lnZ) + + # for i, d in enumerate(evidences): + # data[idx][i][0] = scales[i] + # data[idx][i][1] = d + + # misc_utils.make_dir(out) + # print 'saving to {0}.npy'.format(out) + # np.save(out+'.npy', np.array(data)) + + # dirname = os.path.dirname(out) + # plot_utils.plot_BSM_angles_limit( + # dirname=dirname, outfile=outfile, outformat=['png'], + # args=args, bayesian=True + # ) + + # out = args.angles_corr_output+'/fr_co_evidence' + misc_utils.gen_identifier(args) + # if args.run_angles_correlation: + # if args.bayes_eval_bin is None: assert 0 + # import pymultinest + + # scenarios = [ + # [1, 0, 0, 0], + # [0, 1, 0, 0], + # [0, 0, 1, 0], + # ] + # nuisance = mcmc_paramset.from_tag(ParamTag.NUISANCE) + # mm_angles = mcmc_paramset.from_tag(ParamTag.MMANGLES) + # sc_angles = mcmc_paramset.from_tag(ParamTag.SCALE)[0] + + # if not args.run_mcmc and args.likelihood is Likelihood.GOLEMFIT: + # fitter = gf_utils.setup_fitter(args, asimov_paramset) + # else: fitter = None + + # def CubePrior(cube, ndim, nparams): + # # default are uniform priors + # return ; + + # scan_angles = np.linspace(0, 1, args.bayes_bins) + + # if args.bayes_eval_bin is not None: + # data = np.zeros((len(scenarios), 1, 1, 3)) + # else: data = np.zeros((len(scenarios), args.bayes_bins, args.bayes_bins, 3)) + # for idx, scen in enumerate(scenarios): + # for an in mm_angles: + # an.value = 0 + # keep = mcmc_paramset.from_tag(ParamTag.MMANGLES)[idx] + # q = ParamSet(nuisance.params + [x for x in mm_angles if x.name != keep.name]) + # n_params = len(q) + # prior_ranges = q.seeds + + # scales, angles, evidences = [], [], [] + # for s_idx, sc in enumerate(scan_scales): + # for a_idx, an in enumerate(scan_angles): + # index = s_idx*args.bayes_bins + a_idx + # if args.bayes_eval_bin is not None: + # if index in args.bayes_eval_bin: + # if idx == 0: + # out += '_idx_{0}'.format(index) + # else: continue + + # print '== SCALE = {0:.0E}'.format(np.power(10, sc)) + # print '== ANGLE = {0:.2f}'.format(an) + # sc_angles.value = sc + # keep.value = an + # def lnProb(cube, ndim, nparams): + # for i in range(ndim-1): + # prange = prior_ranges[i][1] - prior_ranges[i][0] + # q[i].value = prange*cube[i] + prior_ranges[i][0] + # for name in q.names: + # mcmc_paramset[name].value = q[name].value + # theta = mcmc_paramset.values + # # print 'theta', theta + # # print 'mcmc_paramset', mcmc_paramset + # return llh_utils.triangle_llh( + # theta=theta, + # args=args, + # asimov_paramset=asimov_paramset, + # mcmc_paramset=mcmc_paramset, + # fitter=fitter + # ) + # prefix = 'mnrun/' + os.path.basename(out) + '_' + # if args.bayes_eval_bin is not None: + # prefix += '{0}_{1}_{2}'.format(idx, s_idx, a_idx) + + # print 'begin running evidence calculation for {0}'.format(prefix) + # result = pymultinest.run( + # LogLikelihood=lnProb, + # Prior=CubePrior, + # n_dims=n_params, + # importance_nested_sampling=True, + # n_live_points=args.bayes_live_points, + # evidence_tolerance=args.bayes_tolerance, + # outputfiles_basename=prefix, + # resume=False, + # verbose=True + # ) + + # analyzer = pymultinest.Analyzer(outputfiles_basename=prefix, n_params=n_params) + # a_lnZ = analyzer.get_stats()['global evidence'] + # print 'Evidence = {0}'.format(a_lnZ) + # scales.append(sc) + # angles.append(an) + # evidences.append(a_lnZ) + + # for i, d in enumerate(evidences): + # data[idx][i][i][0] = scales[i] + # data[idx][i][i][1] = angles[i] + # data[idx][i][i][2] = d + + # misc_utils.make_dir(out) + # print 'saving to {0}.npy'.format(out) + # np.save(out+'.npy', np.array(data)) + + +main.__doc__ = __doc__ + + +if __name__ == '__main__': + main() + -- cgit v1.2.3