From 402f8b53dd892b8fd44ae5ad45eac91b5f6b3750 Mon Sep 17 00:00:00 2001 From: Shivesh Mandalia Date: Fri, 28 Feb 2020 18:39:45 +0000 Subject: reogranise into a python package --- sens.py | 296 ---------------------------------------------------------------- 1 file changed, 296 deletions(-) delete mode 100755 sens.py (limited to 'sens.py') diff --git a/sens.py b/sens.py deleted file mode 100755 index 963a33b..0000000 --- a/sens.py +++ /dev/null @@ -1,296 +0,0 @@ -#! /usr/bin/env python -# author : S. Mandalia -# s.p.mandalia@qmul.ac.uk -# -# date : March 17, 2018 - -""" -HESE BSM flavour ratio analysis script -""" - -from __future__ import absolute_import, division - -import os -import argparse -from functools import partial - -import glob - -import numpy as np -import numpy.ma as ma -from scipy.optimize import minimize - -from utils import fr as fr_utils -from utils import gf as gf_utils -from utils import llh as llh_utils -from utils import misc as misc_utils -from utils import mn as mn_utils -from utils.enums import str_enum -from utils.enums import DataType, Likelihood, ParamTag -from utils.enums import PriorsCateg, StatCateg, Texture -from utils.param import Param, ParamSet - - -def define_nuisance(): - """Define the nuisance parameters.""" - tag = ParamTag.SM_ANGLES - nuisance = [] - g_prior = PriorsCateg.GAUSSIAN - lg_prior = PriorsCateg.LIMITEDGAUSS - e = 1e-9 - nuisance.extend([ - Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag), - Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag), - Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag), - Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag), - Param( - name='m21_2', value=7.40E-23, seed=[7.2E-23, 7.6E-23], ranges=[6.80E-23, 8.02E-23], - std=2.1E-24, tex=r'\Delta m_{21}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag - ), - Param( - name='m3x_2', value=2.494E-21, seed=[2.46E-21, 2.53E-21], ranges=[2.399E-21, 2.593E-21], - std=3.3E-23, tex=r'\Delta m_{3x}^2{\rm GeV}^{-2}', prior=g_prior, tag=tag - ) - ]) - tag = ParamTag.NUISANCE - nuisance.extend([ - Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag), - Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag), - Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag), - Param(name='astroNorm', value=8.0, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag), - Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag) - ]) - return ParamSet(nuisance) - - -def get_paramsets(args, nuisance_paramset): - """Make the paramsets for generating the Asmimov MC sample and also running - the MCMC. - """ - asimov_paramset = [] - llh_paramset = [] - - gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)] - - llh_paramset.extend( - [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)] - ) - llh_paramset.extend(gf_nuisance) - - for parm in llh_paramset: - parm.value = args.__getattribute__(parm.name) - - boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension] - tag = ParamTag.SCALE - llh_paramset.append( - Param( - name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3, - tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \ - misc_utils.get_units(args.dimension)+r'\right )', - tag=tag - ) - ) - llh_paramset = ParamSet(llh_paramset) - - tag = ParamTag.BESTFIT - if args.data is not DataType.REAL: - flavour_angles = fr_utils.fr_to_angles(args.injected_ratio) - else: - flavour_angles = fr_utils.fr_to_angles([1, 1, 1]) - - asimov_paramset.extend(gf_nuisance) - asimov_paramset.extend([ - Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag), - Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag), - ]) - asimov_paramset = ParamSet(asimov_paramset) - - return asimov_paramset, llh_paramset - - -def nuisance_argparse(parser): - nuisance = define_nuisance() - for parm in nuisance: - parser.add_argument( - '--'+parm.name, type=float, default=parm.value, - help=parm.name+' to inject' - ) - - -def process_args(args): - """Process the input args.""" - args.source_ratio = fr_utils.normalise_fr(args.source_ratio) - if args.data is not DataType.REAL: - args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio) - - args.binning = np.logspace( - np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1 - ) - - if args.eval_segment.lower() == 'all': - args.eval_segment = None - else: - args.eval_segment = int(args.eval_segment) - - if args.stat_method is StatCateg.BAYESIAN: - args.likelihood = Likelihood.GOLEMFIT - elif args.stat_method is StatCateg.FREQUENTIST: - args.likelihood = Likelihood.GF_FREQ - - if args.texture is Texture.NONE: - raise ValueError('Must assume a BSM texture') - - -def parse_args(args=None): - """Parse command line arguments""" - parser = argparse.ArgumentParser( - description="BSM flavour ratio analysis", - formatter_class=misc_utils.SortingHelpFormatter, - ) - parser.add_argument( - '--seed', type=misc_utils.seed_parse, default='25', - help='Set the random seed value' - ) - parser.add_argument( - '--threads', type=misc_utils.thread_type, default='1', - help='Set the number of threads to use (int or "max")' - ) - parser.add_argument( - '--datadir', type=str, default='./untitled', - help='Path to store chains' - ) - parser.add_argument( - '--segments', type=int, default=10, - help='Number of new physics scales to evaluate' - ) - parser.add_argument( - '--eval-segment', type=str, default='all', - help='Which point to evalaute' - ) - parser.add_argument( - '--overwrite', type=misc_utils.parse_bool, default='False', - help='Overwrite chains' - ) - fr_utils.fr_argparse(parser) - gf_utils.gf_argparse(parser) - llh_utils.llh_argparse(parser) - mn_utils.mn_argparse(parser) - nuisance_argparse(parser) - if args is None: return parser.parse_args() - else: return parser.parse_args(args.split()) - - -def main(): - args = parse_args() - process_args(args) - misc_utils.print_args(args) - - if args.seed is not None: - np.random.seed(args.seed) - - asimov_paramset, llh_paramset = get_paramsets(args, define_nuisance()) - - # Scale and BSM mixings will be fixed. - scale_prm = llh_paramset.from_tag(ParamTag.SCALE)[0] - base_mn_pset = llh_paramset.from_tag(ParamTag.SCALE, invert=True) - - # Array of scales to scan over. - boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension] - eval_scales = np.linspace(boundaries[0], boundaries[1], args.segments-1) - eval_scales = np.concatenate([[-100.], eval_scales]) - - # Evaluate just one point (job), or all points. - if args.eval_segment is None: - eval_dim = args.segments - else: eval_dim = 1 - - outfile = args.datadir + '/{0}/{1}/fr_stat'.format( - *map(misc_utils.parse_enum, [args.stat_method, args.data]) - ) + misc_utils.gen_identifier(args) - - if not args.overwrite and os.path.isfile(outfile+'.npy'): - print 'FILE EXISTS {0}'.format(outfile+'.npy') - print 'Exiting...' - return - - # Setup Golemfit. - if args.run_mn: - gf_utils.setup_fitter(args, asimov_paramset) - - # Initialise data structure. - stat_arr = np.full((eval_dim, 2), np.nan) - - for idx_sc, scale in enumerate(eval_scales): - if args.eval_segment is not None: - if idx_sc == args.eval_segment: - outfile += '_scale_{0:.0E}'.format(np.power(10, scale)) - else: continue - print '|||| SCALE = {0:.0E}'.format(np.power(10, scale)) - - if not args.overwrite and os.path.isfile(outfile+'.npy'): - print 'FILE EXISTS {0}'.format(outfile+'.npy') - t = np.load(outfile+'.npy') - if np.any(~np.isfinite(t)): - print 'nan found, rerunning...' - pass - else: - print 'Exiting...' - return - - # Lower scale boundary for first (NULL) point and set the scale param. - reset_range = None - if scale < scale_prm.ranges[0]: - reset_range = scale_prm.ranges - scale_prm.ranges = (scale, scale_prm.ranges[1]) - scale_prm.value = scale - - identifier = 'b{0}_{1}_{2}_sca{3}'.format( - args.eval_segment, args.segments, str_enum(args.texture), scale - ) - llh = '{0}'.format(args.likelihood).split('.')[1] - data = '{0}'.format(args.data).split('.')[1] - src_string = misc_utils.solve_ratio(args.source_ratio) - prefix = args.mn_output + '/DIM{0}/{1}/{2}/s{3}/{4}'.format( - args.dimension, data, llh, src_string, identifier - ) - try: - stat = mn_utils.mn_evidence( - mn_paramset = base_mn_pset, - llh_paramset = llh_paramset, - asimov_paramset = asimov_paramset, - args = args, - prefix = prefix - ) - except: - print 'Failed run' - raise - print '## Evidence = {0}'.format(stat) - - if args.eval_segment is not None: - stat_arr[0] = np.array([scale, stat]) - else: - stat_arr[idx_sc] = np.array([scale, stat]) - - # Cleanup. - if reset_range is not None: - scale_prm.ranges = reset_range - - if args.run_mn and not args.debug: - try: - for f in glob.glob(prefix + '*'): - print 'cleaning file {0}'.format(f) - os.remove(f) - except: - print 'got error trying to cleanup, continuing' - pass - - misc_utils.make_dir(outfile) - print 'Saving to {0}'.format(outfile+'.npy') - np.save(outfile+'.npy', stat_arr) - - -main.__doc__ = __doc__ - - -if __name__ == '__main__': - main() -- cgit v1.2.3