From ccffb521195eb5f41471e166e1ba8f695740bcb3 Mon Sep 17 00:00:00 2001 From: shivesh Date: Fri, 6 Apr 2018 17:21:57 -0500 Subject: add test scripts for Golem LV and NSI --- utils/gf.py | 70 +------------------------------------------------------------ 1 file changed, 1 insertion(+), 69 deletions(-) (limited to 'utils/gf.py') diff --git a/utils/gf.py b/utils/gf.py index eaa9450..3fb063b 100644 --- a/utils/gf.py +++ b/utils/gf.py @@ -15,7 +15,7 @@ from functools import partial import GolemFitPy as gf -from utils.enums import * +from utils.enums import DataType, SteeringCateg from utils.misc import enum_parse, thread_factors @@ -70,60 +70,6 @@ def data_distributions(fitter): return hdat, binedges -def fit_flags(fitflag_categ): - flags = gf.FitParametersFlag() - if fitflag_categ is FitFlagCateg.xs: - # False means it's not fixed in minimization - flags.NeutrinoAntineutrinoRatio = False - return flags - - -def fit_params(fit_categ): - params = gf.FitParameters() - params.astroNorm = 7.5 - params.astroDeltaGamma = 0.9 - if fit_categ is FitCateg.hesespl: - params.astroNormSec = 0 - elif fit_categ is FitCateg.hesedpl: - params.astroNormSec=7.0 - elif fit_categ is FitCateg.zpspl: - # zero prompt, single powerlaw - params.promptNorm = 0 - params.astroNormSec = 0 - elif fit_categ is FitCateg.zpdpl: - # zero prompt, double powerlaw - params.promptNorm = 0 - params.astroNormSec=7.0 - elif fit_categ is FitCateg.nunubar2: - params.NeutrinoAntineutrinoRatio = 2 - - -def fit_priors(fitpriors_categ): - priors = gf.Priors() - if fitpriors_categ == FitPriorsCateg.xs: - priors.promptNormCenter = 1 - priors.promptNormWidth = 3 - priors.astroDeltaGammaCenter = 0 - priors.astroDeltaGammaWidth = 1 - return priors - - -def gen_steering_params(steering_categ, quiet=False): - params = gf.SteeringParams() - if quiet: params.quiet = True - params.fastmode = False - params.do_HESE_reshuffle = False - params.numc_tag = steering_categ.name - params.baseline_astro_spectral_index = -2. - if steering_categ is SteeringCateg.LONGLIFE: - params.years = [999] - params.numc_tag = 'std_half1' - if steering_categ is SteeringCateg.DPL: - params.diffuse_fit_type = gf.DiffuseFitType.DoublePowerLaw - params.numc_tag = 'std_half1' - return params - - def gf_argparse(parser): parser.add_argument( '--data', default='real', type=partial(enum_parse, c=DataType), @@ -134,18 +80,4 @@ def gf_argparse(parser): choices=SteeringCateg, help='use asimov/fake dataset with specific steering' ) - parser.add_argument( - '--aft', default='hesespl', type=partial(enum_parse, c=FitCateg), - choices=FitCateg, - help='use asimov/fake dataset with specific Fit' - ) - parser.add_argument( - '--axs', default='nom', type=partial(enum_parse, c=XSCateg), - choices=XSCateg, - help='use asimov/fake dataset with xs scaling' - ) - parser.add_argument( - '--priors', default='uniform', type=partial(enum_parse, c=Priors), - choices=Priors, help='Bayesian priors' - ) -- cgit v1.2.3