#! /usr/bin/env python # author : S. Mandalia # s.p.mandalia@qmul.ac.uk # # date : November 26, 2018 """ HESE flavour ratio contour """ from __future__ import absolute_import, division import os import argparse from functools import partial import numpy as np from utils import fr as fr_utils from utils import gf as gf_utils from utils import llh as llh_utils from utils import misc as misc_utils from utils import mn as mn_utils from utils import plot as plot_utils from utils.enums import str_enum from utils.enums import DataType, Likelihood, ParamTag, PriorsCateg from utils.param import Param, ParamSet, get_paramsets from pymultinest import Analyzer, run def define_nuisance(): """Define the nuisance parameters.""" nuisance = [] tag = ParamTag.NUISANCE lg_prior = PriorsCateg.LIMITEDGAUSS nuisance.extend([ Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag), Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag), Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag), Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag), Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag) ]) return ParamSet(nuisance) def nuisance_argparse(parser): nuisance = define_nuisance() for parm in nuisance: parser.add_argument( '--'+parm.name, type=float, default=parm.value, help=parm.name+' to inject' ) def process_args(args): """Process the input args.""" args.plot_angles = args.plot_chains if args.likelihood is not Likelihood.GOLEMFIT \ and args.likelihood is not Likelihood.GF_FREQ: raise AssertionError( 'Likelihood method {0} not supported for this ' 'script!\nChoose either GOLEMFIT or GF_FREQ'.format( str_enum(args.likelihood) ) ) def parse_args(args=None): """Parse command line arguments""" parser = argparse.ArgumentParser( description="BSM flavour ratio analysis", formatter_class=misc_utils.SortingHelpFormatter, ) parser.add_argument( '--injected-ratio', type=float, nargs=3, default=[1, 1, 1], help='Set the central value for the injected flavour ratio at IceCube' ) parser.add_argument( '--run-scan', type=misc_utils.parse_bool, default='True', help='Do the scan from scratch' ) parser.add_argument( '--plot-chains', type=misc_utils.parse_bool, default='False', help='Plot the (joint) posteriors' ) parser.add_argument( '--plot-triangle', type=misc_utils.parse_bool, default='False', help='Project the posterior contour on the flavour triangle' ) parser.add_argument( '--seed', type=misc_utils.seed_parse, default='25', help='Set the random seed value' ) parser.add_argument( '--threads', type=misc_utils.thread_type, default='1', help='Set the number of threads to use (int or "max")' ) parser.add_argument( '--outfile', type=str, default='./untitled', help='Path to output results' ) try: gf_utils.gf_argparse(parser) except: pass llh_utils.likelihood_argparse(parser) mn_utils.mn_argparse(parser) nuisance_argparse(parser) misc_utils.remove_option(parser, 'sigma_ratio') misc_utils.remove_option(parser, 'mn_output') if args is None: return parser.parse_args() else: return parser.parse_args(args.split()) def gen_identifier(args): f = '_{0}_{1}'.format(*map(str_enum, (args.likelihood, args.data))) if args.data is not DataType.REAL: ir1, ir2, ir3 = misc_utils.solve_ratio(args.injected_ratio) f += '_INJ_{0:03d}_{1:03d}_{2:03d}'.format(ir1, ir2, ir3) return f def gen_figtext(args, asimov_paramset): f = '' if args.data is DataType.REAL: f += 'IceCube Preliminary' else: ir1, ir2, ir3 = misc_utils.solve_ratio(args.injected_ratio) f += 'Injected ratio = [{0}, {1}, {2}]'.format(ir1, ir2, ir3) for param in asimov_paramset: f += '\nInjected {0:20s} = {1:.3f}'.format( param.name, param.nominal_value ) return f def triangle_llh(theta, args, hypo_paramset, fitter): """Log likelihood function for a given theta.""" if len(theta) != len(hypo_paramset): raise AssertionError( 'Dimensions of scan is not the same as the input ' 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset) ) for idx, param in enumerate(hypo_paramset): param.value = theta[idx] if args.likelihood is Likelihood.GOLEMFIT: llh = gf_utils.get_llh(fitter, hypo_paramset) elif args.likelihood is Likelihood.GF_FREQ: llh = gf_utils.get_llh_freq(fitter, hypo_paramset) return llh def ln_prob(theta, args, hypo_paramset, fitter): lp = llh_utils.lnprior(theta, paramset=hypo_paramset) if not np.isfinite(lp): return -np.inf return lp + triangle_llh( theta, args = args, hypo_paramset = hypo_paramset, fitter = fitter ) def lnProb(cube, ndim, n_params, hypo_paramset, args, fitter): if ndim != len(hypo_paramset): raise AssertionError( 'Length of MultiNest scan paramset is not the same as the input ' 'params\ncube={0}\nmn_paramset]{1}'.format(cube, hypo_paramset) ) pranges = hypo_paramset.ranges for i in xrange(ndim): hypo_paramset[i].value = (pranges[i][1]-pranges[i][0])*cube[i] + pranges[i][0] theta = hypo_paramset.values llh = ln_prob( theta = theta, args = args, hypo_paramset = hypo_paramset, fitter = fitter ) return llh def main(): args = parse_args() process_args(args) misc_utils.print_args(args) if args.seed is not None: np.random.seed(args.seed) asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance()) hypo_paramset.extend(asimov_paramset.from_tag(ParamTag.BESTFIT)) outfile = args.outfile + gen_identifier(args) print '== {0:<25} = {1}'.format('outfile', outfile) n_params = len(hypo_paramset) prefix = outfile + '_mn_' misc_utils.make_dir(prefix) print 'asimov_paramset', asimov_paramset print 'hypo_paramset', hypo_paramset if args.run_scan: fitter = gf_utils.setup_fitter(args, asimov_paramset) lnProbEval = partial( lnProb, hypo_paramset = hypo_paramset, args = args, fitter = fitter ) cwd = os.getcwd() os.chdir(prefix[:-len(os.path.basename(prefix))]) print 'Running evidence calculation for {0}'.format(prefix) run( LogLikelihood = lnProbEval, Prior = mn_utils.CubePrior, n_dims = n_params, n_live_points = args.mn_live_points, evidence_tolerance = args.mn_tolerance, outputfiles_basename = prefix[-len(os.path.basename(prefix)):], importance_nested_sampling = True, resume = False, verbose = True ) os.chdir(cwd) # Analyze analyser = Analyzer( outputfiles_basename=prefix, n_params=n_params ) print analyser pranges = hypo_paramset.ranges bf = analyser.get_best_fit()['parameters'] for i in xrange(len(bf)): bf[i] = (pranges[i][1]-pranges[i][0])*bf[i] + pranges[i][0] print 'bestfit = ', bf print 'bestfit log_likelihood', analyser.get_best_fit()['log_likelihood'] print print '{0:50} = {1}'.format('global evidence', analyser.get_stats()['global evidence']) print fig_text = gen_figtext(args, asimov_paramset) fig_text += '\nBestfit LLH = {0}'.format(analyser.get_best_fit()['log_likelihood']) fig_text += '\nBestfits = ' for x in bf: fig_text += '{0:.2f} '.format(x) if args.plot_chains or args.plot_triangle: chains = analyser.get_data()[:,2:] for x in chains: for i in xrange(len(x)): x[i] = (pranges[i][1]-pranges[i][0])*x[i] + pranges[i][0] if args.plot_chains: of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior' plot_utils.chainer_plot( infile = chains, outfile = of, outformat = ['png'], args = args, llh_paramset = hypo_paramset, fig_text = fig_text ) print 'Saved plot', of if args.plot_triangle: llh = -0.5 * analyser.get_data()[:,1] flavour_angles = chains[:,-2:] flavour_ratios = np.array( map(fr_utils.angles_to_fr, flavour_angles) ) of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_triangle' plot_utils.triangle_project( frs = flavour_ratios, llh = llh, outfile = of, outformat = ['png'], args = args, llh_paramset = hypo_paramset, fig_text = fig_text ) print "DONE!" main.__doc__ = __doc__ if __name__ == '__main__': main()