#! /usr/bin/env python # author : S. Mandalia # s.p.mandalia@qmul.ac.uk # # date : March 17, 2018 """ Sample points only assuming unitarity """ from __future__ import absolute_import, division import argparse from copy import deepcopy from functools import partial import numpy as np from utils import fr as fr_utils from utils import llh as llh_utils from utils import mcmc as mcmc_utils from utils import misc as misc_utils from utils import plot as plot_utils from utils.enums import MCMCSeedType, ParamTag, PriorsCateg from utils.param import Param, ParamSet def define_nuisance(): """Define the nuisance parameters.""" tag = ParamTag.SM_ANGLES nuisance = [] g_prior = PriorsCateg.GAUSSIAN lg_prior = PriorsCateg.LIMITEDGAUSS e = 1e-9 nuisance.extend([ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', tag=tag), Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', tag=tag), Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', tag=tag), Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag), ]) return ParamSet(nuisance) def get_paramsets(args, nuisance_paramset): """Make the paramsets for generating the Asmimov MC sample and also running the MCMC. """ asimov_paramset = [] hypo_paramset = [] hypo_paramset.extend( [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)] ) for parm in hypo_paramset: parm.value = args.__getattribute__(parm.name) hypo_paramset = ParamSet(hypo_paramset) tag = ParamTag.BESTFIT flavour_angles = fr_utils.fr_to_angles(args.source_ratio) asimov_paramset.extend([ Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag), Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag), ]) asimov_paramset = ParamSet(asimov_paramset) return asimov_paramset, hypo_paramset def nuisance_argparse(parser): nuisance = define_nuisance() for parm in nuisance: parser.add_argument( '--'+parm.name, type=float, default=parm.value, help=parm.name+' to inject' ) def process_args(args): """Process the input args.""" args.source_ratio = fr_utils.normalise_fr(args.source_ratio) def parse_args(args=None): """Parse command line arguments""" parser = argparse.ArgumentParser( description="BSM flavour ratio analysis", formatter_class=misc_utils.SortingHelpFormatter, ) parser.add_argument( '--source-ratio', type=float, nargs=3, default=[1, 2, 0], help='Set the source flavour ratio' ) parser.add_argument( '--seed', type=misc_utils.seed_parse, default='26', help='Set the random seed value' ) parser.add_argument( '--threads', type=misc_utils.thread_type, default='1', help='Set the number of threads to use (int or "max")' ) parser.add_argument( '--datadir', type=str, default='./untitled', help='Path to store chains' ) mcmc_utils.mcmc_argparse(parser) nuisance_argparse(parser) if args is None: return parser.parse_args() else: return parser.parse_args(args.split()) def gen_identifier(args): f = '_INJ_{0}'.format(misc_utils.solve_ratio(args.source_ratio)) return f def gen_figtext(args, asimov_paramset): f = '' f += 'Source ratio = {0}'.format( misc_utils.solve_ratio(args.source_ratio) ) for param in asimov_paramset: f += '\nInjected {0:20s} = {1:.3f}'.format( param.name, param.nominal_value ) return f def triangle_llh(theta, args, hypo_paramset): """Log likelihood function for a given theta.""" if len(theta) != len(hypo_paramset): raise AssertionError( 'Dimensions of scan is not the same as the input ' 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset) ) for idx, param in enumerate(hypo_paramset): param.value = theta[idx] return 1. # Flat LLH def ln_prob(theta, args, hypo_paramset): dc_hypo_paramset = deepcopy(hypo_paramset) lp = llh_utils.lnprior(theta, paramset=dc_hypo_paramset) if not np.isfinite(lp): return -np.inf return lp + triangle_llh( theta, args = args, hypo_paramset = dc_hypo_paramset, ) def main(): args = parse_args() process_args(args) misc_utils.print_args(args) if args.seed is not None: np.random.seed(args.seed) asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance()) prefix = '' outfile = args.datadir + '/mc_unitary' + prefix + gen_identifier(args) print '== {0:<25} = {1}'.format('outfile', outfile) print 'asimov_paramset', asimov_paramset print 'hypo_paramset', hypo_paramset if args.run_mcmc: ln_prob_eval = partial( ln_prob, hypo_paramset = hypo_paramset, args = args, ) if args.mcmc_seed_type == MCMCSeedType.UNIFORM: p0 = mcmc_utils.flat_seed( hypo_paramset, nwalkers=args.nwalkers ) elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN: p0 = mcmc_utils.gaussian_seed( hypo_paramset, nwalkers=args.nwalkers ) samples = mcmc_utils.mcmc( p0 = p0, ln_prob = ln_prob_eval, ndim = len(hypo_paramset), nwalkers = args.nwalkers, burnin = args.burnin, nsteps = args.nsteps, args = args, threads = args.threads ) mmxs = map(fr_utils.angles_to_u, samples) frs = np.array( [fr_utils.u_to_fr(args.source_ratio, x) for x in mmxs] ) mcmc_utils.save_chains(frs, outfile) of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior' plot_utils.chainer_plot( infile = outfile+'.npy', outfile = of, outformat = ['png'], args = args, llh_paramset = hypo_paramset, fig_text = gen_figtext(args, hypo_paramset) ) print "DONE!" main.__doc__ = __doc__ if __name__ == '__main__': main()