#! /usr/bin/env python # author : S. Mandalia # s.p.mandalia@qmul.ac.uk # # date : March 17, 2018 """ emcee sample SM points for (x, 1-x, 0) """ from __future__ import absolute_import, division import argparse from copy import deepcopy from functools import partial import numpy as np from golemflavor import fr as fr_utils from golemflavor import llh as llh_utils from golemflavor import mcmc as mcmc_utils from golemflavor import misc as misc_utils from golemflavor import plot as plot_utils from golemflavor.enums import MCMCSeedType, ParamTag, PriorsCateg from golemflavor.param import Param, ParamSet def define_nuisance(): """Define the nuisance parameters.""" tag = ParamTag.SM_ANGLES nuisance = [] g_prior = PriorsCateg.GAUSSIAN lg_prior = PriorsCateg.LIMITEDGAUSS e = 1e-9 nuisance.extend([ Param(name='s_12_2', value=0.307, seed=[0.26, 0.35], ranges=[0., 1.], std=0.013, tex=r's_{12}^2', prior=lg_prior, tag=tag), Param(name='c_13_4', value=(1-(0.02206))**2, seed=[0.950, 0.961], ranges=[0., 1.], std=0.00147, tex=r'c_{13}^4', prior=lg_prior, tag=tag), Param(name='s_23_2', value=0.538, seed=[0.31, 0.75], ranges=[0., 1.], std=0.069, tex=r's_{23}^2', prior=lg_prior, tag=tag), Param(name='dcp', value=4.08404, seed=[0+e, 2*np.pi-e], ranges=[0., 2*np.pi], std=2.0, tex=r'\delta_{CP}', tag=tag), ]) tag = ParamTag.SRCANGLES nuisance.extend([ Param(name='astroX', value=0.5, seed=[0., 1.], ranges=[0., 1.], std=0.1, tex=r'x', tag=tag) ]) return ParamSet(nuisance) def get_paramsets(args, nuisance_paramset): """Make the paramsets for generating the Asmimov MC sample and also running the MCMC. """ asimov_paramset = [] hypo_paramset = [] hypo_paramset.extend( [x for x in nuisance_paramset.from_tag(( ParamTag.SM_ANGLES, ParamTag.SRCANGLES ))] ) for parm in hypo_paramset: parm.value = args.__getattribute__(parm.name) hypo_paramset = ParamSet(hypo_paramset) tag = ParamTag.BESTFIT asimov_paramset.extend([ Param(name='astroFlavorAngle1', value=0., ranges=[ 0., 1.], std=0.2, tag=tag), Param(name='astroFlavorAngle2', value=0., ranges=[-1., 1.], std=0.2, tag=tag), ]) asimov_paramset = ParamSet(asimov_paramset) return asimov_paramset, hypo_paramset def nuisance_argparse(parser): nuisance = define_nuisance() for parm in nuisance: parser.add_argument( '--'+parm.name, type=float, default=parm.value, help=parm.name+' to inject' ) def process_args(args): """Process the input args.""" pass def parse_args(args=None): """Parse command line arguments""" parser = argparse.ArgumentParser( description="BSM flavor ratio analysis", formatter_class=misc_utils.SortingHelpFormatter, ) parser.add_argument( '--seed', type=misc_utils.seed_parse, default='26', help='Set the random seed value' ) parser.add_argument( '--threads', type=misc_utils.thread_type, default='1', help='Set the number of threads to use (int or "max")' ) parser.add_argument( '--datadir', type=str, default='./untitled', help='Path to store chains' ) mcmc_utils.mcmc_argparse(parser) nuisance_argparse(parser) misc_utils.remove_option(parser, 'injected_ratio') misc_utils.remove_option(parser, 'plot_angles') misc_utils.remove_option(parser, 'plot_elements') if args is None: return parser.parse_args() else: return parser.parse_args(args.split()) def triangle_llh(theta, args, hypo_paramset): """Log likelihood function for a given theta.""" if len(theta) != len(hypo_paramset): raise AssertionError( 'Dimensions of scan is not the same as the input ' 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset) ) for idx, param in enumerate(hypo_paramset): param.value = theta[idx] return 1. # Flat LLH def ln_prob(theta, args, hypo_paramset): dc_hypo_paramset = deepcopy(hypo_paramset) lp = llh_utils.lnprior(theta, paramset=dc_hypo_paramset) if not np.isfinite(lp): return -np.inf return lp + triangle_llh( theta, args = args, hypo_paramset = dc_hypo_paramset, ) def main(): args = parse_args() process_args(args) misc_utils.print_args(args) if args.seed is not None: np.random.seed(args.seed) asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance()) prefix = '' outfile = args.datadir + '/mc_x' + prefix print('== {0:<25} = {1}'.format('outfile', outfile)) print('asimov_paramset', asimov_paramset) print('hypo_paramset', hypo_paramset) if args.run_mcmc: ln_prob_eval = partial( ln_prob, hypo_paramset = hypo_paramset, args = args, ) if args.mcmc_seed_type == MCMCSeedType.UNIFORM: p0 = mcmc_utils.flat_seed( hypo_paramset, nwalkers=args.nwalkers ) elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN: p0 = mcmc_utils.gaussian_seed( hypo_paramset, nwalkers=args.nwalkers ) samples = mcmc_utils.mcmc( p0 = p0, ln_prob = ln_prob_eval, ndim = len(hypo_paramset), nwalkers = args.nwalkers, burnin = args.burnin, nsteps = args.nsteps, args = args, threads = args.threads ) nsamples = len(samples) srcs = [fr_utils.normalise_fr((x, 1-x, 0)) for x in samples.T[-1]] mmxs = map(fr_utils.angles_to_u, samples.T[:-1].T) frs = np.array( [fr_utils.u_to_fr(srcs[i], mmxs[i]) for i in range(nsamples)], dtype=np.float64 ) mcmc_utils.save_chains(frs, outfile) print("DONE!") main.__doc__ = __doc__ if __name__ == '__main__': main()