#! /usr/bin/env python import os import numpy as np full_scan_mfr = [ # (1, 1, 1), (1, 0, 0) ] fix_sfr_mfr = [ (1, 1, 1, 1, 2, 0), (1, 1, 1, 1, 0, 0), (1, 1, 1, 0, 1, 0), # (1, 1, 1, 0, 0, 1), # (1, 1, 0, 1, 2, 0), # (1, 1, 0, 1, 0, 0), # (1, 1, 0, 0, 1, 0), # (1, 0, 0, 1, 0, 0), # (0, 1, 0, 0, 1, 0), # (1, 2, 0, 1, 2, 0), # (1, 2, 0, 0, 1, 0), ] GLOBAL_PARAMS = {} # MCMC GLOBAL_PARAMS.update(dict( run_mcmc = 'True', burnin = 250, nsteps = 1000, nwalkers = 60, seed = 25, mcmc_seed_type = 'uniform' )) # FR dimension = [3, 6] GLOBAL_PARAMS.update(dict( threads = 1, binning = '1e4 1e7 5', no_bsm = 'False', scale_region = "1E10", energy_dependance = 'spectral', spectral_index = -2, fix_mixing = 'False', fix_mixing_almost = 'False', fold_index = 'False' )) # Likelihood GLOBAL_PARAMS.update(dict( likelihood = 'golemfit', sigma_ratio = '0.01' )) # GolemFit GLOBAL_PARAMS.update(dict( ast = 'p2_0', data = 'real' )) # Plot GLOBAL_PARAMS.update(dict( plot_angles = 'True', plot_elements = 'False', )) outfile = 'dagman_FR_MCMC.submit' golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit' condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/mcmc_submit.sub' with open(outfile, 'w') as f: job_number = 1 for dim in dimension: print 'dimension', dim outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/'.format( GLOBAL_PARAMS['likelihood'], dim ) for frs in fix_sfr_mfr: print 'frs', frs outchains = outchain_head + '/fix_ifr/' if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian': outchains += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_')) outchains += 'mcmc_chain' f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script)) f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim)) f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0])) f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1])) f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2])) f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, True)) f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, frs[3])) f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, frs[4])) f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, frs[5])) for key in GLOBAL_PARAMS.iterkeys(): f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key])) f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains)) job_number += 1 for frs in full_scan_mfr: print 'frs', frs outchains = outchain_head + '/full/' if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian': outchains += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_')) outchains += 'mcmc_chain' f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script)) f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim)) f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0])) f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1])) f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2])) f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False)) f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0)) f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0)) f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0)) for key in GLOBAL_PARAMS.iterkeys(): f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key])) f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains)) job_number += 1