# author : S. Mandalia # s.p.mandalia@qmul.ac.uk # # date : March 17, 2018 """ Useful functions for the BSM flavour ratio analysis """ from __future__ import absolute_import, division import sys import numpy as np from scipy import linalg MASS_EIGENVALUES = [7.40E-23, 2.515E-21] """SM mass eigenvalues""" def angles_to_fr(src_angles): """Convert angular projection of the source flavour ratio back into the flavour ratio. Parameters ---------- src_angles : list, length = 2 sin(phi)^4 and cos(psi)^2 Returns ---------- flavour ratios (nue, numu, nutau) Examples ---------- >>> print angles_to_fr((0.3, 0.4)) (0.38340579025361626, 0.16431676725154978, 0.45227744249483393) """ sphi4, c2psi = src_angles psi = (0.5)*np.arccos(c2psi) sphi2 = np.sqrt(sphi4) cphi2 = 1. - sphi2 spsi2 = np.sin(psi)**2 cspi2 = 1. - spsi2 x = sphi2*cspi2 y = sphi2*spsi2 z = cphi2 return x, y, z def angles_to_u(bsm_angles): """Convert angular projection of the mixing matrix elements back into the mixing matrix elements. Parameters ---------- bsm_angles : list, length = 4 sin(12)^2, cos(13)^4, sin(23)^2 and deltacp Returns ---------- unitary numpy ndarray of shape (3, 3) Examples ---------- >>> from fr import angles_to_u >>> print angles_to_u((0.2, 0.3, 0.5, 1.5)) array([[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ], [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ], [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]]) """ s12_2, c13_4, s23_2, dcp = bsm_angles dcp = np.complex128(dcp) c12_2 = 1. - s12_2 c13_2 = np.sqrt(c13_4) s13_2 = 1. - c13_2 c23_2 = 1. - s23_2 t12 = np.arcsin(np.sqrt(s12_2)) t13 = np.arccos(np.sqrt(c13_2)) t23 = np.arcsin(np.sqrt(s23_2)) c12 = np.cos(t12) s12 = np.sin(t12) c13 = np.cos(t13) s13 = np.sin(t13) c23 = np.cos(t23) s23 = np.sin(t23) p1 = np.array([[1 , 0 , 0] , [0 , c23 , s23] , [0 , -s23 , c23]] , dtype=np.complex128) p2 = np.array([[c13 , 0 , s13*np.exp(-1j*dcp)] , [0 , 1 , 0] , [-s13*np.exp(1j*dcp) , 0 , c13]] , dtype=np.complex128) p3 = np.array([[c12 , s12 , 0] , [-s12 , c12 , 0] , [0 , 0 , 1]] , dtype=np.complex128) u = np.dot(np.dot(p1, p2), p3) return u def cardano_eqn(ham): """Diagonalise the effective Hamiltonian 3x3 matrix into the form h_{eff} = UE_{eff}U^{dagger} using the procedure in PRD91, 052003 (2015). Parameters ---------- ham : numpy ndarray of shape (3, 3) sin(12)^2, cos(13)^4, sin(23)^2 and deltacp Returns ---------- unitary numpy ndarray of shape (3, 3) Examples ---------- >>> import numpy as np >>> from fr import cardano_eqn >>> ham = np.array( >>> [[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ], >>> [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ], >>> [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]] >>> ) >>> print cardano_eqn(ham) array([[-0.11143379-0.58863683j, -0.09067747-0.48219068j, 0.34276625-0.08686465j], [ 0.14835519+0.47511473j, -0.18299305+0.40777481j, 0.31906300+0.82514223j], [-0.62298966+0.07231745j, -0.61407815-0.42709603j, 0.03660313+0.30160428j]]) """ if np.shape(ham) != (3, 3): raise ValueError( 'Input matrix should be a square and dimension 3, ' 'got\n{0}'.format(ham) ) a = -np.trace(ham) b = (0.5) * ((np.trace(ham))**2 - np.trace(np.dot(ham, ham))) c = -linalg.det(ham) Q = (1/9.) * (a**2 - 3*b) R = (1/54.) * (2*a**3 - 9*a*b + 27*c) theta = np.arccos(R / np.sqrt(Q**3)) E1 = -2 * np.sqrt(Q) * np.cos(theta/3.) - (1/3.)*a E2 = -2 * np.sqrt(Q) * np.cos((theta - 2.*np.pi)/3.) - (1/3.)*a E3 = -2 * np.sqrt(Q) * np.cos((theta + 2.*np.pi)/3.) - (1/3.)*a A1 = ham[1][2] * (ham[0][0] - E1) - ham[1][0]*ham[0][2] A2 = ham[1][2] * (ham[0][0] - E2) - ham[1][0]*ham[0][2] A3 = ham[1][2] * (ham[0][0] - E3) - ham[1][0]*ham[0][2] B1 = ham[2][0] * (ham[1][1] - E1) - ham[2][1]*ham[1][0] B2 = ham[2][0] * (ham[1][1] - E2) - ham[2][1]*ham[1][0] B3 = ham[2][0] * (ham[1][1] - E3) - ham[2][1]*ham[1][0] C1 = ham[1][0] * (ham[2][2] - E1) - ham[1][2]*ham[2][0] C2 = ham[1][0] * (ham[2][2] - E2) - ham[1][2]*ham[2][0] C3 = ham[1][0] * (ham[2][2] - E3) - ham[1][2]*ham[2][0] N1 = np.sqrt(abs(A1*B1)**2 + abs(A1*C1)**2 + abs(B1*C1)**2) N2 = np.sqrt(abs(A2*B2)**2 + abs(A2*C2)**2 + abs(B2*C2)**2) N3 = np.sqrt(abs(A3*B3)**2 + abs(A3*C3)**2 + abs(B3*C3)**2) mm = np.array([ [np.conjugate(B1)*C1 / N1, np.conjugate(B2)*C2 / N2, np.conjugate(B3)*C3 / N3], [A1*C1 / N1, A2*C2 / N2, A3*C3 / N3], [A1*B1 / N1, A2*B2 / N2, A3*B3 / N3] ]) return mm def normalise_fr(fr): """Normalise an input flavour combination to a flavour ratio. Parameters ---------- fr : list, length = 3 flavour combination Returns ---------- numpy ndarray flavour ratio Examples ---------- >>> from fr import normalise_fr >>> print normalise_fr((1, 2, 3)) array([ 0.16666667, 0.33333333, 0.5 ]) """ return np.array(fr) / float(np.sum(fr)) NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935)) """NuFIT mixing matrix (s_12^2, c_13^4, s_23^2, dcp)""" def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES, nufit_u=NUFIT_U, no_bsm=False, fix_mixing=False, fix_scale=False, scale=None, check_uni=True): """Construct the BSM mixing matrix from the BSM parameters. Parameters ---------- theta : list, length > 3 BSM parameters dim : int Dimension of BSM physics energy : float Energy in GeV mass_eigenvalues : list, length = 2 SM mass eigenvalues nufit_u : numpy ndarray, dimension 3 SM NuFIT mixing matrix no_bsm : bool Turn off BSM behaviour fix_mixing : bool Fix the BSM mixing angles fix_scale : bool Fix the BSM scale scale : float Used with fix_scale - scale at which to fix check_uni : bool Check the resulting BSM mixing matrix is unitary Returns ---------- unitary numpy ndarray of shape (3, 3) Examples ---------- >>> from fr import params_to_BSMu >>> print params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), dim=3, energy=1000) array([[ 0.18658169 -6.34190523e-01j, -0.26460391 +2.01884200e-01j, 0.67247096 -9.86808417e-07j], [-0.50419832 +2.14420570e-01j, -0.36013768 +5.44254868e-01j, 0.03700961 +5.22039894e-01j], [-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]]) """ if np.shape(nufit_u) != (3, 3): raise ValueError( 'Input matrix should be a square and dimension 3, ' 'got\n{0}'.format(ham) ) if fix_mixing: s12_2, c13_4, s23_2, dcp, sc2 = 0.5, 1.0-1E-6, 0.5, 0., theta elif fix_scale: s12_2, c13_4, s23_2, dcp = theta sc2 = np.log10(scale) else: s12_2, c13_4, s23_2, dcp, sc2 = theta sc2 = np.power(10., sc2) sc1 = sc2 / 100. mass_matrix = np.array( [[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]] ) sm_ham = (1./(2*energy))*np.dot(nufit_u, np.dot(mass_matrix, nufit_u.conj().T)) if no_bsm: eg_vector = cardano_eqn(sm_ham) else: new_physics_u = angles_to_u((s12_2, c13_4, s23_2, dcp)) scale_matrix = np.array( [[0, 0, 0], [0, sc1, 0], [0, 0, sc2]] ) bsm_term = (energy**(dim-3)) * np.dot(new_physics_u, np.dot(scale_matrix, new_physics_u.conj().T)) bsm_ham = sm_ham + bsm_term eg_vector = cardano_eqn(bsm_ham) if check_uni: tu = test_unitarity(eg_vector) if not abs(np.trace(tu) - 3.) < 1e-5 or \ not abs(np.sum(tu) - 3.) < 1e-5: raise AssertionError( 'Matrix is not unitary!\neg_vector\n{0}\ntest ' 'u\n{1}'.format(eg_vector, tu) ) return eg_vector def test_unitarity(x, prnt=False): """Test the unitarity of a matrix. Parameters ---------- x : numpy ndarray Matrix to evaluate prnt : bool Print the result Returns ---------- numpy ndarray Examples ---------- >>> from fr import test_unitarity >>> x = np.identity(3) >>> print test_unitarity(x) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) """ f = abs(np.dot(x, x.conj().T)) if prnt: print 'Unitarity test:\n{0}'.format(f) return f def u_to_fr(source_fr, matrix): """Compute the observed flavour ratio assuming decoherence. Parameters ---------- source_fr : list, length = 3 Source flavour ratio components matrix : numpy ndarray, dimension 3 Mixing matrix Returns ---------- Measured flavour ratio Examples ---------- >>> from fr import params_to_BSMu, u_to_fr >>> print u_to_fr((1, 2, 0), params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), 3, 1000)) array([ 0.33740075, 0.33176584, 0.33083341]) """ # TODO(shivesh): energy dependence composition = np.einsum( 'ai, bi, a -> b', abs(matrix)**2, abs(matrix)**2, source_fr ) ratio = composition / np.sum(source_fr) return ratio