# author : S. Mandalia # s.p.mandalia@qmul.ac.uk # # date : April 04, 2018 """ Likelihood functions for the BSM flavour ratio analysis """ from __future__ import absolute_import, division from functools import partial import numpy as np import scipy from scipy.stats import multivariate_normal, truncnorm from utils import fr as fr_utils from utils import gf as gf_utils from utils.enums import Likelihood, ParamTag, PriorsCateg, StatCateg from utils.misc import enum_parse, gen_identifier, parse_bool def GaussianBoundedRV(loc=0., sigma=1., lower=-np.inf, upper=np.inf): """Normalised gaussian bounded between lower and upper values""" low, up = (lower - loc) / sigma, (upper - loc) / sigma g = scipy.stats.truncnorm(loc=loc, scale=sigma, a=low, b=up) return g def multi_gaussian(fr, fr_bf, sigma, offset=-320): """Multivariate gaussian likelihood.""" cov_fr = np.identity(3) * sigma return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr)) + offset def llh_argparse(parser): parser.add_argument( '--stat-method', default='bayesian', type=partial(enum_parse, c=StatCateg), choices=StatCateg, help='Statistical method to employ' ) def lnprior(theta, paramset): """Priors on theta.""" if len(theta) != len(paramset): raise AssertionError( 'Length of MCMC scan is not the same as the input ' 'params\ntheta={0}\nparamset={1}'.format(theta, paramset) ) for idx, param in enumerate(paramset): param.value = theta[idx] ranges = paramset.ranges for value, range in zip(theta, ranges): if range[0] <= value <= range[1]: pass else: return -np.inf prior = 0 for param in paramset: if param.prior is PriorsCateg.GAUSSIAN: prior += GaussianBoundedRV( loc=param.nominal_value, sigma=param.std ).logpdf(param.value) elif param.prior is PriorsCateg.LIMITEDGAUSS: prior += GaussianBoundedRV( loc=param.nominal_value, sigma=param.std, lower=param.ranges[0], upper=param.ranges[1] ).logpdf(param.value) return prior def triangle_llh(theta, args, asimov_paramset, llh_paramset): """Log likelihood function for a given theta.""" if len(theta) != len(llh_paramset): raise AssertionError( 'Length of MCMC scan is not the same as the input ' 'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset) ) for idx, param in enumerate(llh_paramset): param.value = theta[idx] hypo_paramset = asimov_paramset for param in llh_paramset.from_tag(ParamTag.NUISANCE): hypo_paramset[param.name].value = param.value bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:]) bin_width = np.abs(np.diff(args.binning)) spectral_index = -hypo_paramset['astroDeltaGamma'].value source_flux = np.array( [fr * np.power(bin_centers, spectral_index) for fr in args.source_ratio] ).T bsm_angles = llh_paramset.from_tag( [ParamTag.SCALE, ParamTag.MMANGLES], values=True ) m_eig_names = ['m21_2', 'm3x_2'] ma_names = ['s_12_2', 'c_13_4', 's_23_2', 'dcp'] if set(m_eig_names+ma_names).issubset(set(llh_paramset.names)): mass_eigenvalues = [x.value for x in llh_paramset if x.name in m_eig_names] sm_u = fr_utils.angles_to_u( [x.value for x in llh_paramset if x.name in ma_names] ) else: mass_eigenvalues = fr_utils.MASS_EIGENVALUES sm_u = fr_utils.NUFIT_U if args.no_bsm: fr = fr_utils.u_to_fr(source_flux, np.array(sm_u, dtype=np.complex256)) else: mf_perbin = [] for i_sf, sf_perbin in enumerate(source_flux): u = fr_utils.params_to_BSMu( theta = bsm_angles, dim = args.dimension, energy = bin_centers[i_sf], mass_eigenvalues = mass_eigenvalues, sm_u = sm_u, no_bsm = args.no_bsm, texture = args.texture, ) fr = fr_utils.u_to_fr(sf_perbin, u) mf_perbin.append(fr) measured_flux = np.array(mf_perbin).T intergrated_measured_flux = np.sum(measured_flux * bin_width, axis=1) averaged_measured_flux = (1./(args.binning[-1] - args.binning[0])) * \ intergrated_measured_flux fr = averaged_measured_flux / np.sum(averaged_measured_flux) flavour_angles = fr_utils.fr_to_angles(fr) # print 'flavour_angles', map(float, flavour_angles) for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)): param.value = flavour_angles[idx] if args.likelihood is Likelihood.GOLEMFIT: llh = gf_utils.get_llh(hypo_paramset) elif args.likelihood is Likelihood.GF_FREQ: llh = gf_utils.get_llh_freq(hypo_paramset) return llh def ln_prob(theta, args, asimov_paramset, llh_paramset): lp = lnprior(theta, paramset=llh_paramset) if not np.isfinite(lp): return -np.inf return lp + triangle_llh( theta, args=args, asimov_paramset=asimov_paramset, llh_paramset=llh_paramset )