1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
/**
* Copyright (C) 2009
* The IceCube collaboration
* ID: $Id: G4BeamTestTank.cxx 158930 2017-10-20 01:17:41Z cweaver $
*
* @file G4BeamTestTank.cxx
* @version $Rev: 158930 $
* @date $Date: 2017-10-20 02:17:41 +0100 (Fri, 20 Oct 2017) $
* @author Tilo Waldenmaier, Thomas Melzig
*/
#include <g4-tankresponse/g4classes/G4BeamTestTank.h>
#include <g4-tankresponse/g4classes/G4TankIceSD.h>
#include <icetray/I3Units.h>
#include <icetray/OMKey.h>
#include <dataclasses/TankKey.h>
#include <dataclasses/geometry/I3TankGeo.h>
#include <dataclasses/geometry/I3Geometry.h>
#include <dataclasses/I3Position.h>
#include <G4LogicalVolume.hh>
#include <G4PVPlacement.hh>
#include <G4Material.hh>
#include <G4Tubs.hh>
#include <G4Sphere.hh>
#include <G4Box.hh>
#include <G4SDManager.hh>
#include <G4ThreeVector.hh>
#include <G4VisAttributes.hh>
#include <G4UserLimits.hh>
#include <boost/foreach.hpp>
//prevent gcc to make something stupid with pretended unused variables
#ifdef __GNUC__
#define ATTRIBUTE_UNUSED __attribute__((unused))
#else
#define ATTRIBUTE_UNUSED
#endif
G4BeamTestTank::G4BeamTestTank(const TankKey& tankKey, const I3Geometry& geometry):
tankKey_(tankKey), geometry_(geometry)
{
const I3StationGeoMap& stationMap = geometry.stationgeo;
unsigned int tankID = tankKey.tank==TankKey::TankA?0:1;
I3StationGeoMap::const_iterator station_iter = stationMap.find(tankKey.string);
if(station_iter==stationMap.end())
{
log_fatal("The requested station %d in not in the geometry!", tankKey.string);
return;
}
if(station_iter->second.size()<tankID)
{
log_fatal("The number of tanks in station %d is not correct!", tankKey.string);
return;
}
const I3TankGeo& tankGeo = station_iter->second.at(tankID);
// Get tank dimensions
tankThickness_ = 0.5*CLHEP::cm;
tankHeight_ = (tankGeo.tankheight / I3Units::m) * CLHEP::m + tankThickness_;
innerRadius_ = (tankGeo.tankradius / I3Units::m) * CLHEP::m;
outerRadius_ = innerRadius_ + tankThickness_;
// Get fill and snow heights
fillHeight_ = (tankGeo.fillheight / I3Units::m) * CLHEP::m;
snowHeight_ = (tankGeo.snowheight / I3Units::m) * CLHEP::m;
perliteHeight_ = tankHeight_ - tankThickness_ - fillHeight_;
// Set DOM dimensions
glassOuterRadius_ = 6.5 * 2.54 * CLHEP::cm; // 6.5" outer glass sphere radius
glassThickness_ = 0.5 * 2.54 * CLHEP::cm; // 0.5" glass sphere thickness
// Calculate tank position (tank center)
// tankGeo.position corresponds to the average position of the two DOMs in a tank
position_.set((tankGeo.position.GetX() / I3Units::m) * CLHEP::m,
(tankGeo.position.GetY() / I3Units::m) * CLHEP::m,
(tankGeo.position.GetZ() / I3Units::m) * CLHEP::m - fillHeight_ + 0.5*tankHeight_);
// Get positions of the doms relativ to tank center
BOOST_FOREACH(const OMKey& omKey, tankGeo.omKeyList_)
{
I3OMGeoMap::const_iterator omGeo_iter = geometry_.omgeo.find(omKey);
if(omGeo_iter==geometry_.omgeo.end())
{
log_error_stream(omKey << " is missing in Tank " << tankKey_);
continue;
}
G4ThreeVector relPos(omGeo_iter->second.position.GetX() - tankGeo.position.GetX(),
omGeo_iter->second.position.GetY() - tankGeo.position.GetY(),
omGeo_iter->second.position.GetZ() - tankGeo.position.GetZ());
relDomPositions_[omKey] = (relPos / I3Units::m) * CLHEP::m;
}
//
// Calculate Delaunay points
//
G4ThreeVector triangleDir(NAN, NAN, NAN);
switch(station_iter->second.size())
{
case 1: // Single tank
{
// Vector orthogonal to DOM positions
triangleDir.set(relDomPositions_.begin()->second.y(),
-relDomPositions_.begin()->second.x(),
0.0);
break;
}
case 2: // Two tanks
{
const I3TankGeo& neighborGeo = station_iter->second.at(tankID==0?1:0);
G4ThreeVector neighborPos(neighborGeo.position.GetX(),
neighborGeo.position.GetY(),
neighborGeo.position.GetZ());
// Convert to G4 units
neighborPos *= CLHEP::m/I3Units::m;
// Same z position same as other tank
neighborPos.setZ(position_.z());
triangleDir = position_ - neighborPos;
break;
}
default:
{
log_fatal("Invalid number of tanks (%zu) in station %d!",
station_iter->second.size(), tankKey_.string);
break;
}
}
// side length
double triangleLength = 10.0 * CLHEP::m;
triangleDir.setMag(0.5*triangleLength/cos(CLHEP::pi/6.0));
delaunayPoint1_ = position_ + triangleDir;
// Rotate by 120 deg
triangleDir.rotateZ(CLHEP::pi/1.5);
delaunayPoint2_ = position_ + triangleDir;
// Rotate by 120 deg
triangleDir.rotateZ(CLHEP::pi/1.5);
delaunayPoint3_ = position_ + triangleDir;
}
G4BeamTestTank::~G4BeamTestTank()
{
}
G4VPhysicalVolume* G4BeamTestTank::InstallTank(G4VPhysicalVolume* mother, const G4ThreeVector& origin)
{
// User limits (energy cutoffs)
// Do not create photons or electrons below cherenkov threshold
// See also corresponding UserSpecialCuts in Physicslist !!!!
// Maybe do all of this as stepping action ??????
G4UserLimits* energyLimit = new G4UserLimits();
energyLimit->SetUserMinEkine(280.0 * CLHEP::keV); // Cherenkov threshold of electrons in ice
std::string tankName=boost::lexical_cast<std::string>(tankKey_);
// Define plastic frame
G4Material* plastic = G4Material::GetMaterial("Plastic");
G4Tubs* solidTank = new G4Tubs(("solid_tank_" + tankName).c_str(),
0.0 * CLHEP::m, outerRadius_, 0.5 * tankHeight_,
0.0 * CLHEP::deg, 360.0 * CLHEP::deg);
tankLog_ = new G4LogicalVolume(solidTank, plastic,
("log_tank_" + tankName).c_str(), 0, 0, 0);
// Define ice volume
G4Material* ice = G4Material::GetMaterial("Ice");
G4Tubs* solidIce = new G4Tubs(("solid_ice_" + tankName).c_str(),
0.0 * CLHEP::m, innerRadius_, 0.5 * fillHeight_,
0.0 * CLHEP::deg, 360.0 * CLHEP::deg);
G4LogicalVolume* logIce =
new G4LogicalVolume(solidIce, ice, ("log_ice_" + tankName).c_str(), 0, 0, 0);
G4ThreeVector physIcePosition(0, 0, -0.5*tankHeight_ + tankThickness_ + 0.5*fillHeight_);
G4VPhysicalVolume* physIce ATTRIBUTE_UNUSED =
new G4PVPlacement(0, physIcePosition, logIce,
("ice_" + tankName).c_str(), tankLog_, false, 0);
// Define perlite volume
G4Material* perlite = G4Material::GetMaterial("Perlite");
G4Tubs* solidPerlite = new G4Tubs(("solid_perlite_" + tankName).c_str(),
0.0 * CLHEP::m, innerRadius_, 0.5 * perliteHeight_,
0.0 * CLHEP::deg, 360.0 * CLHEP::deg);
G4LogicalVolume* logPerlite =
new G4LogicalVolume(solidPerlite, perlite, ("log_perlite_" + tankName).c_str(), 0, 0, 0);
G4ThreeVector physPerlitePosition(0, 0, -0.5 * tankHeight_ + 0.5 * CLHEP::cm + fillHeight_ +
0.5 * perliteHeight_);
G4VPhysicalVolume* physPerlite ATTRIBUTE_UNUSED =
new G4PVPlacement(0, physPerlitePosition, logPerlite,
("perlite_" + tankName).c_str(), tankLog_, false, 0);
// Define glass sphere & effective DOM material splitted in upper and lower part
G4Material* glass = G4Material::GetMaterial("Glass");
G4Material* effectiveDOM = G4Material::GetMaterial("effectiveDOM");
std::map<OMKey, G4ThreeVector> domPosIce;
std::map<OMKey, G4ThreeVector>::const_iterator om_iter;
for(om_iter=relDomPositions_.begin(); om_iter!=relDomPositions_.end(); ++om_iter)
{
const OMKey& omKey = om_iter->first;
G4ThreeVector upperDOMpos(om_iter->second.x(), om_iter->second.y(), -0.5 * perliteHeight_);
G4ThreeVector lowerDOMpos(om_iter->second.x(), om_iter->second.y(), 0.5 * fillHeight_);
domPosIce[omKey] = lowerDOMpos;
std::string omName=boost::lexical_cast<std::string>(omKey);
G4Sphere *upperglasssphere = new G4Sphere (("solid_dom_up_" + omName).c_str(),
0.0 * CLHEP::m, glassOuterRadius_,
0.0 * CLHEP::deg, 360.0 * CLHEP::deg,
0.0 * CLHEP::deg, 90.0 * CLHEP::deg);
G4Sphere *lowerglasssphere = new G4Sphere (("solid_dom_lo_" + omName).c_str(),
0.0 * CLHEP::m, glassOuterRadius_,
0.0 * CLHEP::deg, 360.0 * CLHEP::deg,
90.0 * CLHEP::deg, 180.0 * CLHEP::deg);
G4double domInnerRadius = glassOuterRadius_ - glassThickness_;
G4Sphere *upperdomsphere = new G4Sphere (("solid_inside_dom_up_" + omName).c_str(),
0.0 * CLHEP::m, domInnerRadius,
0.0 * CLHEP::deg, 360.0 * CLHEP::deg,
0.0 * CLHEP::deg, 90.0 * CLHEP::deg);
G4Sphere *lowerdomsphere = new G4Sphere (("solid_inside_dom_lo_" + omName).c_str(),
0.0 * CLHEP::m, domInnerRadius,
0.0 * CLHEP::deg, 360.0 * CLHEP::deg,
90.0 * CLHEP::deg, 180.0 * CLHEP::deg);
G4LogicalVolume* logUpperGlass =
new G4LogicalVolume(upperglasssphere, glass,
("log_dom_up_" + omName).c_str(), 0, 0, 0);
G4LogicalVolume* logLowerGlass =
new G4LogicalVolume(lowerglasssphere, glass,
("log_dom_lo_" + omName).c_str(), 0, 0, 0);
G4LogicalVolume* logUpperDOM =
new G4LogicalVolume(upperdomsphere, effectiveDOM,
("log_inside_dom_up_" + omName).c_str(), 0, 0, 0);
G4LogicalVolume* logLowerDOM =
new G4LogicalVolume(lowerdomsphere, effectiveDOM,
("log_inside_dom_lo_" + omName).c_str(), 0, 0, 0);
G4VPhysicalVolume* physUpperGlass ATTRIBUTE_UNUSED =
new G4PVPlacement(0, upperDOMpos, logUpperGlass,
("dom_up_" + omName).c_str(), logPerlite, false, 0);
G4VPhysicalVolume* physLowerGlass ATTRIBUTE_UNUSED =
new G4PVPlacement(0, lowerDOMpos, logLowerGlass,
("dom_lo_" + omName).c_str(), logIce, false, 0);
G4VPhysicalVolume* physUpperDOM ATTRIBUTE_UNUSED =
new G4PVPlacement(0, G4ThreeVector(0,0,0), logUpperDOM,
("inside_dom_up_" + omName).c_str(), logUpperGlass, false, 0);
G4VPhysicalVolume* physLowerDOM ATTRIBUTE_UNUSED =
new G4PVPlacement(0, G4ThreeVector(0,0,0), logLowerDOM,
("inside_dom_lo_" + omName).c_str(), logLowerGlass, false, 0);
// apply energy limits
logUpperGlass->SetUserLimits(energyLimit);
logLowerGlass->SetUserLimits(energyLimit);
logUpperDOM->SetUserLimits(energyLimit);
logLowerDOM->SetUserLimits(energyLimit);
}
// Define sensitive detector
G4SDManager* sdManager = G4SDManager::GetSDMpointer();
iceSD_ = new G4TankIceSD(("ice_SD_" + tankName).c_str(), domPosIce);
sdManager->AddNewDetector(iceSD_);
logIce->SetSensitiveDetector(iceSD_);
// Instantiation of a set of visualization attributes with red colour
G4VisAttributes * tankVisAtt = new G4VisAttributes(G4Colour(1,0,0));
// Set the forced wireframe style
//snowVisAtt->SetForceWireFrame(true);
// Assignment of the visualization attributes to the logical volume
tankLog_->SetVisAttributes(tankVisAtt);
G4ThreeVector tankPos = position_ - origin - mother->GetTranslation();
G4VPhysicalVolume* tankPhys = new G4PVPlacement(0, tankPos, tankLog_,
("tank_" + tankName).c_str(),
mother->GetLogicalVolume(), false, 0);
// apply energy limits
tankLog_->SetUserLimits(energyLimit);
logPerlite->SetUserLimits(energyLimit);
logIce->SetUserLimits(energyLimit);
return tankPhys;
}
double G4BeamTestTank::GetNumCherenkov(const OMKey& omKey)
{
return std::max(iceSD_->GetNumCherenkov(omKey), 0.);
}
double G4BeamTestTank::GetNumCherenkovWeight(const OMKey& omKey)
{
return std::max(iceSD_->GetNumCherenkovWeight(omKey), 0.);
}
double G4BeamTestTank::GetEDep_G4(const OMKey& omKey)
{
return std::max(iceSD_->GetEDep(omKey), 0.);
}
double G4BeamTestTank::GetTime_G4(const OMKey& omKey)
{
return iceSD_->GetTime(omKey);
}
double G4BeamTestTank::GetEDep_I3(const OMKey& omKey)
{
return std::max(iceSD_->GetEDep(omKey), 0.) / CLHEP::keV * I3Units::keV;
}
double G4BeamTestTank::GetTime_I3(const OMKey& omKey)
{
return (iceSD_->GetTime(omKey) / CLHEP::s) * I3Units::s;
}
I3Position G4BeamTestTank::GetPos_I3()
{
I3Position pos((position_.x() / CLHEP::m) * I3Units::m,
(position_.y() / CLHEP::m) * I3Units::m,
(position_.z() / CLHEP::m) * I3Units::m);
return pos;
}
double G4BeamTestTank::GetX_I3()
{
return (position_.x() / CLHEP::m) * I3Units::m;
}
double G4BeamTestTank::GetY_I3()
{
return (position_.y() / CLHEP::m) * I3Units::m;
}
double G4BeamTestTank::GetZ_I3()
{
return (position_.z() / CLHEP::m) * I3Units::m;
}
double G4BeamTestTank::GetTankHeight_I3()
{
return (tankHeight_ / CLHEP::m) * I3Units::m;
}
double G4BeamTestTank::GetTankRadius_I3()
{
return (outerRadius_ / CLHEP::m) * I3Units::m;
}
double G4BeamTestTank::GetSnowHeight_I3()
{
return (snowHeight_ / CLHEP::m) * I3Units::m;
}
|