aboutsummaryrefslogtreecommitdiffstats
path: root/src/G4BeamTestTank.cxx
blob: 02f6751de0c83cf5bc9f81bed9d45870e952bc02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#include <G4LogicalVolume.hh>
#include <G4PVPlacement.hh>
#include <G4Material.hh>
#include <G4Tubs.hh>
#include <G4Sphere.hh>
#include <G4Box.hh>
#include <G4SDManager.hh>
#include <G4ThreeVector.hh>

#include <G4VisAttributes.hh>

#include <G4UserLimits.hh>

/* #include <boost/foreach.hpp> */

#include "G4BeamTestTank.h"
#include "G4BeamTestSiSD.h"
/* #include "G4TankIceSD.h" */

//prevent gcc to make something stupid with pretended unused variables
#ifdef __GNUC__
#define ATTRIBUTE_UNUSED __attribute__((unused))
#else
#define ATTRIBUTE_UNUSED
#endif


G4BeamTestTank::G4BeamTestTank()
{
  // Get tank dimensions
  // tankThickness_ = 0.0*CLHEP::cm; // TODO(shivesh) : check thickness
  tankThickness_ = 0.44 * 2.54 *CLHEP::cm; // TODO(shivesh) : check thickness
  tankHeight_  = 76.83 * 2.54 * CLHEP::cm;
  innerRadius_ = 32 * 2.54 * CLHEP::cm;
  outerRadius_ = innerRadius_ + tankThickness_;

  // Get fill height
  fillHeight_ = 55.1 * 2.54 * CLHEP::cm;
  airHeight_ = tankHeight_ - fillHeight_;

  // Set DOM dimensions
  glassOuterRadius_ = 6.5 * 2.54 * CLHEP::cm; // 6.5" outer glass sphere radius
  glassThickness_   = 0.5 * 2.54 * CLHEP::cm; // 0.5" glass sphere thickness
}


G4BeamTestTank::~G4BeamTestTank()
{

}


G4VPhysicalVolume* G4BeamTestTank::InstallTank(G4VPhysicalVolume* mother, const G4ThreeVector& origin)
{
  // User limits (energy cutoffs)
  // Do not create photons or electrons below cherenkov threshold
  // See also corresponding UserSpecialCuts in Physicslist !!!!
  // TODO(shivesh): Maybe do all of this as stepping action ??????
  G4UserLimits* energyLimit = new G4UserLimits();
  energyLimit->SetUserMinEkine(2.26 * CLHEP::eV);  // Lower threshold of PMT - 550nm

  // std::string tankName=boost::lexical_cast<std::string>(tankKey_);
  std::string tankName = "BTT";

  // Define plastic frame TODO(shivesh): plastic or polyethelene?
  G4Material* plastic = G4Material::GetMaterial("Plastic");
  G4Tubs* solidTank = new G4Tubs(("solid_tank_" + tankName).c_str(),
                                 0.0 * CLHEP::m, outerRadius_, 0.5 * tankHeight_,
                                 0.0 * CLHEP::deg, 360.0 * CLHEP::deg);
  tankLog_ = new G4LogicalVolume(solidTank, plastic,
                                 ("log_tank_" + tankName).c_str(), 0, 0, 0);

  // Define water volume
  G4Material* water = G4Material::GetMaterial("Water");
  G4Tubs* solidWater = new G4Tubs(("solid_water_" + tankName).c_str(),
                                0.0 * CLHEP::m, innerRadius_, 0.5 * fillHeight_,
                                0.0 * CLHEP::deg, 360.0 * CLHEP::deg);
  G4LogicalVolume* logWater =
      new G4LogicalVolume(solidWater, water, ("log_water_" + tankName).c_str(), 0, 0, 0);
  G4ThreeVector physWaterPosition(0, 0, -0.5*tankHeight_ + tankThickness_ + 0.5*fillHeight_);
  G4VPhysicalVolume* physWater ATTRIBUTE_UNUSED =
      new G4PVPlacement(0, physWaterPosition, logWater,
                        ("water_" + tankName).c_str(), tankLog_, false, 0);

  // Define air volume
  G4Material* air = G4Material::GetMaterial("Air");
  G4cout << "airHeight_ = " << airHeight_ << G4endl;
  G4cout << "fillHeight_ = " << fillHeight_ << G4endl;
  G4Tubs* solidAir = new G4Tubs(("solid_air_" + tankName).c_str(),
                                    0.0 * CLHEP::m, innerRadius_, 0.5 * airHeight_,
                                    0.0 * CLHEP::deg, 360.0 * CLHEP::deg);
  G4LogicalVolume* logAir =
      new G4LogicalVolume(solidAir, air, ("log_air_" + tankName).c_str(), 0, 0, 0);
  G4ThreeVector physAirPosition(0, 0, -0.5 * tankHeight_ + 0.5 * CLHEP::cm + fillHeight_ +
                                    0.5 * airHeight_);
  G4cout << "physAirPosition = " << physAirPosition << G4endl;
  G4VPhysicalVolume* physAir_UNUSED =
      new G4PVPlacement(0, physAirPosition, logAir,
                        ("air_" + tankName).c_str(), tankLog_, false, 0);

  // Define glass sphere & effective DOM material splitted in upper and lower part
  G4Material* glass        = G4Material::GetMaterial("Glass");
  G4Material* effectiveDOM = G4Material::GetMaterial("effectiveDOM");

  // std::map<OMKey, G4ThreeVector> domPosIce;
  // std::map<OMKey, G4ThreeVector>::const_iterator om_iter;
  // for(om_iter=relDomPositions_.begin(); om_iter!=relDomPositions_.end(); ++om_iter)
  // {
  /* const OMKey& omKey = om_iter->first; */

  G4ThreeVector upperDOMpos(0, 0, -0.5 * airHeight_);
  G4ThreeVector lowerDOMpos(0, 0,  0.5 * fillHeight_);
  G4cout << "upperDOMpos = " << upperDOMpos << G4endl;
  G4cout << "lowerDOMpos = " << lowerDOMpos << G4endl;

  // domPosIce[omKey] = lowerDOMpos;

  // std::string omName=boost::lexical_cast<std::string>(omKey);
  std::string omName="BTOM";

  G4Sphere *upperglasssphere = new G4Sphere (("solid_dom_up_" + omName).c_str(),
                                             0.0 * CLHEP::m, glassOuterRadius_,
                                             0.0 * CLHEP::deg, 360.0 * CLHEP::deg,
                                             0.0 * CLHEP::deg,  90.0 * CLHEP::deg);
  G4Sphere *lowerglasssphere = new G4Sphere (("solid_dom_lo_" + omName).c_str(),
                                             0.0  * CLHEP::m, glassOuterRadius_,
                                             0.0  * CLHEP::deg, 360.0 * CLHEP::deg,
                                             90.0 * CLHEP::deg, 180.0 * CLHEP::deg);

  G4double domInnerRadius = glassOuterRadius_ - glassThickness_;
  G4Sphere *upperdomsphere = new G4Sphere (("solid_inside_dom_up_" + omName).c_str(),
                                           0.0 * CLHEP::m, domInnerRadius,
                                           0.0 * CLHEP::deg, 360.0 * CLHEP::deg,
                                           0.0 * CLHEP::deg,  90.0 * CLHEP::deg);
  G4Sphere *lowerdomsphere = new G4Sphere (("solid_inside_dom_lo_" + omName).c_str(),
                                           0.0  * CLHEP::m, domInnerRadius,
                                           0.0  * CLHEP::deg, 360.0 * CLHEP::deg,
                                           90.0 * CLHEP::deg, 180.0 * CLHEP::deg);

  G4LogicalVolume* logUpperGlass =
      new G4LogicalVolume(upperglasssphere, glass,
                          ("log_dom_up_" + omName).c_str(), 0, 0, 0);
  G4LogicalVolume* logLowerGlass =
      new G4LogicalVolume(lowerglasssphere, glass,
                          ("log_dom_lo_" + omName).c_str(), 0, 0, 0);
  G4LogicalVolume* logUpperDOM =
      new G4LogicalVolume(upperdomsphere, effectiveDOM,
                          ("log_inside_dom_up_" + omName).c_str(), 0, 0, 0);
  G4LogicalVolume* logLowerDOM =
      new G4LogicalVolume(lowerdomsphere, effectiveDOM,
                          ("log_inside_dom_lo_" + omName).c_str(), 0, 0, 0);
  G4VPhysicalVolume* physUpperGlass ATTRIBUTE_UNUSED =
      new G4PVPlacement(0, upperDOMpos, logUpperGlass,
                        ("dom_up_" + omName).c_str(), logAir, false, 0);
  G4VPhysicalVolume* physLowerGlass ATTRIBUTE_UNUSED =
      new G4PVPlacement(0, lowerDOMpos, logLowerGlass,
                        ("dom_lo_" + omName).c_str(), logWater, false, 0);
  G4VPhysicalVolume* physUpperDOM ATTRIBUTE_UNUSED =
      new G4PVPlacement(0, G4ThreeVector(0,0,0), logUpperDOM,
                        ("inside_dom_up_" + omName).c_str(), logUpperGlass, false, 0);
  G4VPhysicalVolume* physLowerDOM ATTRIBUTE_UNUSED =
      new G4PVPlacement(0, G4ThreeVector(0,0,0), logLowerDOM,
                        ("inside_dom_lo_" + omName).c_str(), logLowerGlass, false, 0);

  // apply energy limits
  logUpperGlass->SetUserLimits(energyLimit);
  logLowerGlass->SetUserLimits(energyLimit);
  logUpperDOM->SetUserLimits(energyLimit);
  logLowerDOM->SetUserLimits(energyLimit);
  // }

  // Define sensitive detector
  G4SDManager* sdManager = G4SDManager::GetSDMpointer();
  iceSD_ = new G4BeamTestSiSD(("ice_SD_" + tankName).c_str(), "HitsCollection");
  sdManager->AddNewDetector(iceSD_);
  // logLowerDOM->SetSensitiveDetector(iceSD_);
  logLowerGlass->SetSensitiveDetector(iceSD_);

  // Instantiation of a set of visualization attributes with red colour
  G4VisAttributes * tankVisAtt = new G4VisAttributes(G4Colour(1,0,0));
  // Set the forced wireframe style
  //snowVisAtt->SetForceWireFrame(true);
  // Assignment of the visualization attributes to the logical volume
  tankLog_->SetVisAttributes(tankVisAtt);

  G4ThreeVector tankPos = position_ - origin - mother->GetTranslation();
  G4cout << "tankPos = " << tankPos << G4endl;

  G4VPhysicalVolume* tankPhys = new G4PVPlacement(0, tankPos, tankLog_,
                                                  ("tank_" + tankName).c_str(),
                                                  mother->GetLogicalVolume(), false, 0);

  // apply energy limits
  tankLog_->SetUserLimits(energyLimit);
  logAir->SetUserLimits(energyLimit);
  logWater->SetUserLimits(energyLimit);

  return tankPhys;
}


/* double G4BeamTestTank::GetNumCherenkov(#<{(| const OMKey& omKey |)}>#) */
/* { */
/*   return std::max(iceSD_->GetNumCherenkov(#<{(| omKey |)}>#), 0.); */
/* } */
/*  */
/*  */
/* double G4BeamTestTank::GetNumCherenkovWeight(#<{(| const OMKey& omKey |)}>#) */
/* { */
/*   return std::max(iceSD_->GetNumCherenkovWeight(#<{(| omKey |)}>#), 0.); */
/* } */
/*  */
/*  */
/* double G4BeamTestTank::GetEDep_G4(#<{(| const OMKey& omKey |)}>#) */
/* { */
/*   return std::max(iceSD_->GetEDep(#<{(| omKey |)}>#), 0.); */
/* } */
/*  */
/*  */
/* double G4BeamTestTank::GetTime_G4(#<{(| const OMKey& omKey |)}>#) */
/* { */
/*   return iceSD_->GetTime(#<{(| omKey |)}>#); */
/* } */
/*  */

/* double G4BeamTestTank::GetEDep_I3(const OMKey& omKey) */
/* { */
/*   return std::max(iceSD_->GetEDep(omKey), 0.) / CLHEP::keV * I3Units::keV; */
/* } */


/* double G4BeamTestTank::GetTime_I3(const OMKey& omKey) */
/* { */
/*   return (iceSD_->GetTime(omKey) / CLHEP::s) * I3Units::s; */
/* } */


/* I3Position G4BeamTestTank::GetPos_I3() */
/* { */
/*   I3Position pos((position_.x() / CLHEP::m) * I3Units::m, */
/*                  (position_.y() / CLHEP::m) * I3Units::m, */
/*                  (position_.z() / CLHEP::m) * I3Units::m); */
/*   return pos; */
/* } */


/* double G4BeamTestTank::GetX_I3() */
/* { */
/*   return (position_.x() / CLHEP::m) * I3Units::m; */
/* } */
/*  */
/*  */
/* double G4BeamTestTank::GetY_I3() */
/* { */
/*   return (position_.y() / CLHEP::m) * I3Units::m; */
/* } */
/*  */
/*  */
/* double G4BeamTestTank::GetZ_I3() */
/* { */
/*   return (position_.z() / CLHEP::m) * I3Units::m; */
/* } */
/*  */

/* double G4BeamTestTank::GetTankHeight_I3() */
/* { */
/*   return (tankHeight_ / CLHEP::m) */
/* } */
/*  */
/*  */
/* double G4BeamTestTank::GetTankRadius_I3() */
/* { */
/*   return (outerRadius_ / CLHEP::m) */
/* } */
/*  */
/*  */
/* double G4BeamTestTank::GetFillHeight_I3() */
/* { */
/*   return (fillHeight_ / CLHEP::m) */
/* } */