diff options
| author | shivesh <s.p.mandalia@qmul.ac.uk> | 2019-04-13 12:37:29 -0500 |
|---|---|---|
| committer | shivesh <s.p.mandalia@qmul.ac.uk> | 2019-04-13 12:37:29 -0500 |
| commit | bb8f16faaaedae18e82049085c00920d3fa3a5f4 (patch) | |
| tree | 61e64e0fbef28df3f9c9de63bab6bf18dd992442 | |
| parent | af72b63ae519c3cffc84cacadb7300ffceaa39df (diff) | |
| parent | a54bff2e35984c89ea470b857c8152b1b5a32865 (diff) | |
| download | GolemFlavor-bb8f16faaaedae18e82049085c00920d3fa3a5f4.tar.gz GolemFlavor-bb8f16faaaedae18e82049085c00920d3fa3a5f4.zip | |
Merge branch 'refactor' of github.com:ShiveshM/flavour_ratio into refactor
| -rwxr-xr-x | contour.py | 110 | ||||
| -rw-r--r-- | utils/gf.py | 1 |
2 files changed, 75 insertions, 36 deletions
@@ -24,7 +24,7 @@ from utils import mcmc as mcmc_utils from utils import plot as plot_utils from utils.enums import str_enum from utils.enums import DataType, Likelihood, MCMCSeedType, ParamTag, PriorsCateg -from utils.param import Param, ParamSet, get_paramsets +from utils.param import Param, ParamSet from pymultinest import Analyzer, run @@ -35,23 +35,68 @@ def define_nuisance(): tag = ParamTag.NUISANCE lg_prior = PriorsCateg.LIMITEDGAUSS nuisance.extend([ - # Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag), - # Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, prior=lg_prior, tag=tag), - Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, tag=tag), - Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, tag=tag), + Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag), + Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, prior=lg_prior, tag=tag), + # Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, tag=tag), + # Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, tag=tag), Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0., 10.], std=0.1, tag=tag), Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0., 20.], std=1.5, tag=tag), Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag), - Param(name='CRDeltaGamma', value=0., seed=[-0.1, 0.1 ], ranges=[-1., 1. ], std=0.1, tag=tag), - Param(name='NeutrinoAntineutrinoRatio', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag), - Param(name='anisotropyScale', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag), - Param(name='domEfficiency', value=0.99, seed=[0.8, 1.2 ], ranges=[0.8, 1.2 ], std=0.1, tag=tag), - Param(name='holeiceForward', value=0., seed=[-0.8, 0.8 ], ranges=[-4.42, 1.58 ], std=0.1, tag=tag), - Param(name='piKRatio', value=1.0, seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag) + # Param(name='CRDeltaGamma', value=0., seed=[-0.1, 0.1 ], ranges=[-1., 1. ], std=0.1, tag=tag), + # Param(name='NeutrinoAntineutrinoRatio', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag), + # Param(name='anisotropyScale', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag), + # Param(name='domEfficiency', value=0.99, seed=[0.8, 1.2 ], ranges=[0.8, 1.2 ], std=0.1, tag=tag), + # Param(name='holeiceForward', value=0., seed=[-0.8, 0.8 ], ranges=[-4.42, 1.58 ], std=0.1, tag=tag), + # Param(name='piKRatio', value=1.0, seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag) ]) return ParamSet(nuisance) +def get_paramsets(args, nuisance_paramset): + """Make the paramsets for generating the Asmimov MC sample and also running + the MCMC. + """ + asimov_paramset = [] + llh_paramset = [] + + gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)] + + llh_paramset.extend( + [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)] + ) + llh_paramset.extend(gf_nuisance) + + for parm in llh_paramset: + parm.value = args.__getattribute__(parm.name) + + boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension] + tag = ParamTag.SCALE + llh_paramset.append( + Param( + name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3, + tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \ + misc_utils.get_units(args.dimension)+r'\right )', + tag=tag + ) + ) + llh_paramset = ParamSet(llh_paramset) + + tag = ParamTag.BESTFIT + if args.data is not DataType.REAL: + flavour_angles = fr_utils.fr_to_angles(args.injected_ratio) + else: + flavour_angles = fr_utils.fr_to_angles([1, 1, 1]) + + asimov_paramset.extend(gf_nuisance) + asimov_paramset.extend([ + Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag), + Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag), + ]) + asimov_paramset = ParamSet(asimov_paramset) + + return asimov_paramset, llh_paramset + + def nuisance_argparse(parser): nuisance = define_nuisance() for parm in nuisance: @@ -62,14 +107,16 @@ def nuisance_argparse(parser): def process_args(args): """Process the input args.""" - if args.likelihood is not Likelihood.GOLEMFIT \ - and args.likelihood is not Likelihood.GF_FREQ: - raise AssertionError( - 'Likelihood method {0} not supported for this ' - 'script!\nChoose either GOLEMFIT or GF_FREQ'.format( - str_enum(args.likelihood) - ) - ) + if args.data is not DataType.REAL: + args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio) + + if args.stat_method is StatCateg.BAYESIAN: + args.likelihood = Likelihood.GOLEMFIT + elif args.stat_method is StatCateg.FREQUENTIST: + args.likelihood = Likelihood.GF_FREQ + + args.mcmc_threads = thread_factors(args.threads)[0] + args.threads = thread_factors(args.threads)[1] def parse_args(args=None): @@ -83,7 +130,7 @@ def parse_args(args=None): help='Set the central value for the injected flavour ratio at IceCube' ) parser.add_argument( - '--seed', type=misc_utils.seed_parse, default='25', + '--seed', type=misc_utils.seed_parse, default='26', help='Set the random seed value' ) parser.add_argument( @@ -94,13 +141,10 @@ def parse_args(args=None): '--outfile', type=str, default='./untitled', help='Path to output results' ) - try: - gf_utils.gf_argparse(parser) - except: pass - llh_utils.likelihood_argparse(parser) + gf_utils.gf_argparse(parser) + llh_utils.llh_argparse(parser) mcmc_utils.mcmc_argparse(parser) nuisance_argparse(parser) - misc_utils.remove_option(parser, 'sigma_ratio') if args is None: return parser.parse_args() else: return parser.parse_args(args.split()) @@ -127,7 +171,7 @@ def gen_figtext(args, asimov_paramset): return f -def triangle_llh(theta, args, hypo_paramset, fitter): +def triangle_llh(theta, args, hypo_paramset): """Log likelihood function for a given theta.""" if len(theta) != len(hypo_paramset): raise AssertionError( @@ -138,14 +182,14 @@ def triangle_llh(theta, args, hypo_paramset, fitter): param.value = theta[idx] if args.likelihood is Likelihood.GOLEMFIT: - llh = gf_utils.get_llh(fitter, hypo_paramset) + llh = gf_utils.get_llh(hypo_paramset) elif args.likelihood is Likelihood.GF_FREQ: - llh = gf_utils.get_llh_freq(fitter, hypo_paramset) + llh = gf_utils.get_llh_freq(hypo_paramset) return llh -def ln_prob(theta, args, hypo_paramset, fitter): +def ln_prob(theta, args, hypo_paramset): lp = llh_utils.lnprior(theta, paramset=hypo_paramset) if not np.isfinite(lp): return -np.inf @@ -153,7 +197,6 @@ def ln_prob(theta, args, hypo_paramset, fitter): theta, args = args, hypo_paramset = hypo_paramset, - fitter = fitter ) @@ -177,13 +220,12 @@ def main(): print 'hypo_paramset', hypo_paramset if args.run_mcmc: - fitter = gf_utils.setup_fitter(args, asimov_paramset) + gf_utils.setup_fitter(args, asimov_paramset) ln_prob_eval = partial( ln_prob, hypo_paramset = hypo_paramset, args = args, - fitter = fitter ) if args.mcmc_seed_type == MCMCSeedType.UNIFORM: @@ -203,9 +245,7 @@ def main(): burnin = args.burnin, nsteps = args.nsteps, args = args, - threads = 1 - # TODO(shivesh): broken because you cannot pickle a GolemFitPy object - # threads = misc_utils.thread_factors(args.threads)[0] + threads = args.mcmc_threads ) mcmc_utils.save_chains(samples, outfile) diff --git a/utils/gf.py b/utils/gf.py index bc004bd..b0071f5 100644 --- a/utils/gf.py +++ b/utils/gf.py @@ -70,7 +70,6 @@ def steering_params(args): params.fastmode = True params.simToLoad= steering_categ.name.lower() params.evalThreads = args.threads - # params.evalThreads = thread_factors(args.threads)[1] if args.likelihood is Likelihood.GOLEMFIT: params.frequentist = False; |
