aboutsummaryrefslogtreecommitdiffstats
path: root/chainer_plot.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-03-13 13:29:26 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-03-13 13:29:26 -0500
commit9f5e370f60a3816ae350811d55087e2bb652f68b (patch)
treec927b14cc7ef0f2109b9a01b8dee17f6896daabb /chainer_plot.py
parentd11d7528e591336e3cb5a3f8c47312c4f6d22a25 (diff)
downloadGolemFlavor-9f5e370f60a3816ae350811d55087e2bb652f68b.tar.gz
GolemFlavor-9f5e370f60a3816ae350811d55087e2bb652f68b.zip
integrate flavour ratio with GolemFit
Diffstat (limited to 'chainer_plot.py')
-rwxr-xr-xchainer_plot.py8
1 files changed, 7 insertions, 1 deletions
diff --git a/chainer_plot.py b/chainer_plot.py
index 26dc164..31de5bd 100755
--- a/chainer_plot.py
+++ b/chainer_plot.py
@@ -78,7 +78,8 @@ def plot(infile, angles, outfile, measured_ratio, sigma_ratio, fix_sfr,
labels=[r'\tilde{s}_{12}^2', r'\tilde{c}_{13}^4',
r'\tilde{s}_{23}^2', r'\tilde{\delta_{CP}}',
r'{\rm log}_{10}\Lambda', r'sin^4(\phi)', r'cos(2\psi)']
- print labels
+ labels = [r'convNorm', r'promptNorm', 'muonNorm', 'astroNorm', 'astroDeltaGamma'] + labels
+ print 'labels', labels
if not fix_scale:
s2 = np.log10(scale_bounds)
@@ -111,6 +112,8 @@ def plot(infile, angles, outfile, measured_ratio, sigma_ratio, fix_sfr,
ranges = [(0, 1), (0, 1), (0, 1), (0, 2*np.pi), (0, 1), (-1, 1)]
else:
ranges = [(0, 1), (0, 1), (0, 1), (0, 2*np.pi), s2, (0, 1), (-1, 1)]
+ ranges = [(0, 5), (0, 5), (0, 5), (0, 5), (0, 5)] + ranges
+ print 'ranges', ranges
def flat_angles_to_u(x):
return abs(mcmc_scan.angles_to_u(x)).astype(np.float32).flatten().tolist()
@@ -118,6 +121,7 @@ def plot(infile, angles, outfile, measured_ratio, sigma_ratio, fix_sfr,
raw = np.load(infile)
print 'raw.shape', raw.shape
if not angles:
+ nuisance, raw = raw[:,5:], raw[:,-5:]
if fix_mixing:
fr_elements = np.array(map(mcmc_scan.angles_to_fr, raw[:,-2:]))
sc_elements = raw[:,:-2]
@@ -139,8 +143,10 @@ def plot(infile, angles, outfile, measured_ratio, sigma_ratio, fix_sfr,
sc_elements = raw[:,-3:-2]
m_elements = np.array(map(flat_angles_to_u, raw[:,:-3]))
Tchain = np.column_stack([m_elements, sc_elements, fr_elements])
+ Tchain = np.column_stack([nuisance, Tchain])
else:
Tchain = raw
+ print 'Tchain.shape', Tchain.shape
if fix_sfr:
if fix_scale: