aboutsummaryrefslogtreecommitdiffstats
path: root/contour.py
diff options
context:
space:
mode:
authorShivesh Mandalia <shivesh.mandalia@outlook.com>2020-02-28 18:39:45 +0000
committerShivesh Mandalia <shivesh.mandalia@outlook.com>2020-02-28 18:39:45 +0000
commit402f8b53dd892b8fd44ae5ad45eac91b5f6b3750 (patch)
treeb619c6efb0eb303e164bbd27691cdd9f8fce36a2 /contour.py
parent3a5a6c658e45402d413970e8d273a656ed74dcf5 (diff)
downloadGolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.tar.gz
GolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.zip
reogranise into a python package
Diffstat (limited to 'contour.py')
-rwxr-xr-xcontour.py260
1 files changed, 0 insertions, 260 deletions
diff --git a/contour.py b/contour.py
deleted file mode 100755
index db9a933..0000000
--- a/contour.py
+++ /dev/null
@@ -1,260 +0,0 @@
-#! /usr/bin/env python
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : November 26, 2018
-
-"""
-HESE flavour ratio contour
-"""
-
-from __future__ import absolute_import, division
-
-import os
-import argparse
-from copy import deepcopy
-from functools import partial
-
-import numpy as np
-
-from utils import fr as fr_utils
-from utils import gf as gf_utils
-from utils import llh as llh_utils
-from utils import misc as misc_utils
-from utils import mcmc as mcmc_utils
-from utils import plot as plot_utils
-from utils.enums import str_enum
-from utils.enums import DataType, Likelihood, MCMCSeedType, ParamTag
-from utils.enums import PriorsCateg
-from utils.param import Param, ParamSet
-
-
-def define_nuisance():
- """Define the nuisance parameters."""
- nuisance = []
- tag = ParamTag.NUISANCE
- lg_prior = PriorsCateg.LIMITEDGAUSS
- nuisance.extend([
- Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
- Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, prior=lg_prior, tag=tag),
- # Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, tag=tag),
- # Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, tag=tag),
- Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0., 10.], std=0.1, tag=tag),
- Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0., 20.], std=1.5, tag=tag),
- Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag),
- # Param(name='CRDeltaGamma', value=0., seed=[-0.1, 0.1 ], ranges=[-1., 1. ], std=0.1, tag=tag),
- # Param(name='NeutrinoAntineutrinoRatio', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
- # Param(name='anisotropyScale', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag),
- # Param(name='domEfficiency', value=0.99, seed=[0.8, 1.2 ], ranges=[0.8, 1.2 ], std=0.1, tag=tag),
- # Param(name='holeiceForward', value=0., seed=[-0.8, 0.8 ], ranges=[-4.42, 1.58 ], std=0.1, tag=tag),
- # Param(name='piKRatio', value=1.0, seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag)
- ])
- return ParamSet(nuisance)
-
-
-def get_paramsets(args, nuisance_paramset):
- """Make the paramsets for generating the Asmimov MC sample and also running
- the MCMC.
- """
- asimov_paramset = []
- llh_paramset = []
-
- gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)]
- llh_paramset.extend(gf_nuisance)
-
- for parm in llh_paramset:
- parm.value = args.__getattribute__(parm.name)
-
- llh_paramset = ParamSet(llh_paramset)
-
- if args.data is not DataType.REAL:
- flavour_angles = fr_utils.fr_to_angles(args.injected_ratio)
- else:
- flavour_angles = fr_utils.fr_to_angles([1, 1, 1])
-
- tag = ParamTag.BESTFIT
- asimov_paramset.extend(gf_nuisance)
- asimov_paramset.extend([
- Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag),
- Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag),
- ])
- asimov_paramset = ParamSet(asimov_paramset)
-
- return asimov_paramset, llh_paramset
-
-
-def nuisance_argparse(parser):
- nuisance = define_nuisance()
- for parm in nuisance:
- parser.add_argument(
- '--'+parm.name, type=float, default=parm.value,
- help=parm.name+' to inject'
- )
-
-def process_args(args):
- """Process the input args."""
- if args.data is not DataType.REAL:
- args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio)
-
- args.likelihood = Likelihood.GOLEMFIT
-
- args.mcmc_threads = misc_utils.thread_factors(args.threads)[0]
- args.threads = misc_utils.thread_factors(args.threads)[1]
-
-
-def parse_args(args=None):
- """Parse command line arguments"""
- parser = argparse.ArgumentParser(
- description="BSM flavour ratio analysis",
- formatter_class=misc_utils.SortingHelpFormatter,
- )
- parser.add_argument(
- '--injected-ratio', type=float, nargs=3, default=[1, 1, 1],
- help='Set the central value for the injected flavour ratio at IceCube'
- )
- parser.add_argument(
- '--seed', type=misc_utils.seed_parse, default='26',
- help='Set the random seed value'
- )
- parser.add_argument(
- '--threads', type=misc_utils.thread_type, default='1',
- help='Set the number of threads to use (int or "max")'
- )
- parser.add_argument(
- '--datadir', type=str, default='./untitled',
- help='Path to output results'
- )
- gf_utils.gf_argparse(parser)
- mcmc_utils.mcmc_argparse(parser)
- nuisance_argparse(parser)
- if args is None: return parser.parse_args()
- else: return parser.parse_args(args.split())
-
-
-def gen_identifier(args):
- f = '_{0}'.format(str_enum(args.data))
- if args.data is not DataType.REAL:
- f += '_INJ_{0}'.format(misc_utils.solve_ratio(args.injected_ratio))
- return f
-
-
-def gen_figtext(args):
- """Generate the figure text."""
- t = r'$'
- if args.data is DataType.REAL:
- t += r'\textbf{IceCube\:Preliminary}$'
- elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
- t += r'{\rm\bf IceCube\:Simulation}' + '$\n$'
- t += r'\rm{Injected\:composition}'+r'\:=\:({0})_\oplus'.format(
- solve_ratio(args.injected_ratio).replace('_', ':')
- ) + '$'
- return t
-
-
-def triangle_llh(theta, args, hypo_paramset):
- """Log likelihood function for a given theta."""
- if len(theta) != len(hypo_paramset):
- raise AssertionError(
- 'Dimensions of scan is not the same as the input '
- 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset)
- )
- for idx, param in enumerate(hypo_paramset):
- param.value = theta[idx]
-
- if args.likelihood is Likelihood.GOLEMFIT:
- llh = gf_utils.get_llh(hypo_paramset)
- elif args.likelihood is Likelihood.GF_FREQ:
- llh = gf_utils.get_llh_freq(hypo_paramset)
-
- return llh
-
-
-def ln_prob(theta, args, hypo_paramset):
- dc_hypo_paramset = deepcopy(hypo_paramset)
- lp = llh_utils.lnprior(theta, paramset=dc_hypo_paramset)
- if not np.isfinite(lp):
- return -np.inf
- return lp + triangle_llh(
- theta,
- args = args,
- hypo_paramset = dc_hypo_paramset,
- )
-
-
-def main():
- args = parse_args()
- process_args(args)
- misc_utils.print_args(args)
-
- if args.seed is not None:
- np.random.seed(args.seed)
-
- asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance())
- hypo_paramset.extend(asimov_paramset.from_tag(ParamTag.BESTFIT))
-
- prefix = ''
- outfile = args.datadir + '/contour' + prefix + gen_identifier(args)
- print '== {0:<25} = {1}'.format('outfile', outfile)
-
- print 'asimov_paramset', asimov_paramset
- print 'hypo_paramset', hypo_paramset
-
- if args.run_mcmc:
- gf_utils.setup_fitter(args, asimov_paramset)
-
- ln_prob_eval = partial(
- ln_prob,
- hypo_paramset = hypo_paramset,
- args = args,
- )
-
- if args.mcmc_seed_type == MCMCSeedType.UNIFORM:
- p0 = mcmc_utils.flat_seed(
- hypo_paramset, nwalkers=args.nwalkers
- )
- elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN:
- p0 = mcmc_utils.gaussian_seed(
- hypo_paramset, nwalkers=args.nwalkers
- )
-
- samples = mcmc_utils.mcmc(
- p0 = p0,
- ln_prob = ln_prob_eval,
- ndim = len(hypo_paramset),
- nwalkers = args.nwalkers,
- burnin = args.burnin,
- nsteps = args.nsteps,
- args = args,
- threads = args.mcmc_threads
- )
- mcmc_utils.save_chains(samples, outfile)
-
- labels = [
- r'$N_{\rm conv}$',
- r'$N_{\rm prompt}$',
- r'$N_{\rm muon}$',
- r'$N_{\rm astro}$',
- r'$\gamma_{\rm astro}$',
- r'$\text{sin}^4\phi_\oplus$',
- r'$\text{cos}\left(2\psi_\oplus\right)$',
- ]
-
- of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior'
- plot_utils.chainer_plot(
- infile = outfile+'.npy',
- outfile = of,
- outformat = ['pdf'],
- args = args,
- llh_paramset = hypo_paramset,
- fig_text = gen_figtext(args),
- labels = labels
- )
-
- print "DONE!"
-
-
-main.__doc__ = __doc__
-
-
-if __name__ == '__main__':
- main()