diff options
| author | Shivesh Mandalia <shivesh.mandalia@outlook.com> | 2020-02-28 18:39:45 +0000 |
|---|---|---|
| committer | Shivesh Mandalia <shivesh.mandalia@outlook.com> | 2020-02-28 18:39:45 +0000 |
| commit | 402f8b53dd892b8fd44ae5ad45eac91b5f6b3750 (patch) | |
| tree | b619c6efb0eb303e164bbd27691cdd9f8fce36a2 /contour.py | |
| parent | 3a5a6c658e45402d413970e8d273a656ed74dcf5 (diff) | |
| download | GolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.tar.gz GolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.zip | |
reogranise into a python package
Diffstat (limited to 'contour.py')
| -rwxr-xr-x | contour.py | 260 |
1 files changed, 0 insertions, 260 deletions
diff --git a/contour.py b/contour.py deleted file mode 100755 index db9a933..0000000 --- a/contour.py +++ /dev/null @@ -1,260 +0,0 @@ -#! /usr/bin/env python -# author : S. Mandalia -# s.p.mandalia@qmul.ac.uk -# -# date : November 26, 2018 - -""" -HESE flavour ratio contour -""" - -from __future__ import absolute_import, division - -import os -import argparse -from copy import deepcopy -from functools import partial - -import numpy as np - -from utils import fr as fr_utils -from utils import gf as gf_utils -from utils import llh as llh_utils -from utils import misc as misc_utils -from utils import mcmc as mcmc_utils -from utils import plot as plot_utils -from utils.enums import str_enum -from utils.enums import DataType, Likelihood, MCMCSeedType, ParamTag -from utils.enums import PriorsCateg -from utils.param import Param, ParamSet - - -def define_nuisance(): - """Define the nuisance parameters.""" - nuisance = [] - tag = ParamTag.NUISANCE - lg_prior = PriorsCateg.LIMITEDGAUSS - nuisance.extend([ - Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag), - Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, prior=lg_prior, tag=tag), - # Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, tag=tag), - # Param(name='promptNorm', value=0., seed=[0., 6. ], ranges=[0., 20.], std=2.4, tag=tag), - Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0., 10.], std=0.1, tag=tag), - Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0., 20.], std=1.5, tag=tag), - Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag), - # Param(name='CRDeltaGamma', value=0., seed=[-0.1, 0.1 ], ranges=[-1., 1. ], std=0.1, tag=tag), - # Param(name='NeutrinoAntineutrinoRatio', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag), - # Param(name='anisotropyScale', value=1., seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag), - # Param(name='domEfficiency', value=0.99, seed=[0.8, 1.2 ], ranges=[0.8, 1.2 ], std=0.1, tag=tag), - # Param(name='holeiceForward', value=0., seed=[-0.8, 0.8 ], ranges=[-4.42, 1.58 ], std=0.1, tag=tag), - # Param(name='piKRatio', value=1.0, seed=[0.8, 1.2 ], ranges=[0., 2. ], std=0.1, tag=tag) - ]) - return ParamSet(nuisance) - - -def get_paramsets(args, nuisance_paramset): - """Make the paramsets for generating the Asmimov MC sample and also running - the MCMC. - """ - asimov_paramset = [] - llh_paramset = [] - - gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)] - llh_paramset.extend(gf_nuisance) - - for parm in llh_paramset: - parm.value = args.__getattribute__(parm.name) - - llh_paramset = ParamSet(llh_paramset) - - if args.data is not DataType.REAL: - flavour_angles = fr_utils.fr_to_angles(args.injected_ratio) - else: - flavour_angles = fr_utils.fr_to_angles([1, 1, 1]) - - tag = ParamTag.BESTFIT - asimov_paramset.extend(gf_nuisance) - asimov_paramset.extend([ - Param(name='astroFlavorAngle1', value=flavour_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag), - Param(name='astroFlavorAngle2', value=flavour_angles[1], ranges=[-1., 1.], std=0.2, tag=tag), - ]) - asimov_paramset = ParamSet(asimov_paramset) - - return asimov_paramset, llh_paramset - - -def nuisance_argparse(parser): - nuisance = define_nuisance() - for parm in nuisance: - parser.add_argument( - '--'+parm.name, type=float, default=parm.value, - help=parm.name+' to inject' - ) - -def process_args(args): - """Process the input args.""" - if args.data is not DataType.REAL: - args.injected_ratio = fr_utils.normalise_fr(args.injected_ratio) - - args.likelihood = Likelihood.GOLEMFIT - - args.mcmc_threads = misc_utils.thread_factors(args.threads)[0] - args.threads = misc_utils.thread_factors(args.threads)[1] - - -def parse_args(args=None): - """Parse command line arguments""" - parser = argparse.ArgumentParser( - description="BSM flavour ratio analysis", - formatter_class=misc_utils.SortingHelpFormatter, - ) - parser.add_argument( - '--injected-ratio', type=float, nargs=3, default=[1, 1, 1], - help='Set the central value for the injected flavour ratio at IceCube' - ) - parser.add_argument( - '--seed', type=misc_utils.seed_parse, default='26', - help='Set the random seed value' - ) - parser.add_argument( - '--threads', type=misc_utils.thread_type, default='1', - help='Set the number of threads to use (int or "max")' - ) - parser.add_argument( - '--datadir', type=str, default='./untitled', - help='Path to output results' - ) - gf_utils.gf_argparse(parser) - mcmc_utils.mcmc_argparse(parser) - nuisance_argparse(parser) - if args is None: return parser.parse_args() - else: return parser.parse_args(args.split()) - - -def gen_identifier(args): - f = '_{0}'.format(str_enum(args.data)) - if args.data is not DataType.REAL: - f += '_INJ_{0}'.format(misc_utils.solve_ratio(args.injected_ratio)) - return f - - -def gen_figtext(args): - """Generate the figure text.""" - t = r'$' - if args.data is DataType.REAL: - t += r'\textbf{IceCube\:Preliminary}$' - elif args.data in [DataType.ASIMOV, DataType.REALISATION]: - t += r'{\rm\bf IceCube\:Simulation}' + '$\n$' - t += r'\rm{Injected\:composition}'+r'\:=\:({0})_\oplus'.format( - solve_ratio(args.injected_ratio).replace('_', ':') - ) + '$' - return t - - -def triangle_llh(theta, args, hypo_paramset): - """Log likelihood function for a given theta.""" - if len(theta) != len(hypo_paramset): - raise AssertionError( - 'Dimensions of scan is not the same as the input ' - 'params\ntheta={0}\nparamset]{1}'.format(theta, hypo_paramset) - ) - for idx, param in enumerate(hypo_paramset): - param.value = theta[idx] - - if args.likelihood is Likelihood.GOLEMFIT: - llh = gf_utils.get_llh(hypo_paramset) - elif args.likelihood is Likelihood.GF_FREQ: - llh = gf_utils.get_llh_freq(hypo_paramset) - - return llh - - -def ln_prob(theta, args, hypo_paramset): - dc_hypo_paramset = deepcopy(hypo_paramset) - lp = llh_utils.lnprior(theta, paramset=dc_hypo_paramset) - if not np.isfinite(lp): - return -np.inf - return lp + triangle_llh( - theta, - args = args, - hypo_paramset = dc_hypo_paramset, - ) - - -def main(): - args = parse_args() - process_args(args) - misc_utils.print_args(args) - - if args.seed is not None: - np.random.seed(args.seed) - - asimov_paramset, hypo_paramset = get_paramsets(args, define_nuisance()) - hypo_paramset.extend(asimov_paramset.from_tag(ParamTag.BESTFIT)) - - prefix = '' - outfile = args.datadir + '/contour' + prefix + gen_identifier(args) - print '== {0:<25} = {1}'.format('outfile', outfile) - - print 'asimov_paramset', asimov_paramset - print 'hypo_paramset', hypo_paramset - - if args.run_mcmc: - gf_utils.setup_fitter(args, asimov_paramset) - - ln_prob_eval = partial( - ln_prob, - hypo_paramset = hypo_paramset, - args = args, - ) - - if args.mcmc_seed_type == MCMCSeedType.UNIFORM: - p0 = mcmc_utils.flat_seed( - hypo_paramset, nwalkers=args.nwalkers - ) - elif args.mcmc_seed_type == MCMCSeedType.GAUSSIAN: - p0 = mcmc_utils.gaussian_seed( - hypo_paramset, nwalkers=args.nwalkers - ) - - samples = mcmc_utils.mcmc( - p0 = p0, - ln_prob = ln_prob_eval, - ndim = len(hypo_paramset), - nwalkers = args.nwalkers, - burnin = args.burnin, - nsteps = args.nsteps, - args = args, - threads = args.mcmc_threads - ) - mcmc_utils.save_chains(samples, outfile) - - labels = [ - r'$N_{\rm conv}$', - r'$N_{\rm prompt}$', - r'$N_{\rm muon}$', - r'$N_{\rm astro}$', - r'$\gamma_{\rm astro}$', - r'$\text{sin}^4\phi_\oplus$', - r'$\text{cos}\left(2\psi_\oplus\right)$', - ] - - of = outfile[:5]+outfile[5:].replace('data', 'plots')+'_posterior' - plot_utils.chainer_plot( - infile = outfile+'.npy', - outfile = of, - outformat = ['pdf'], - args = args, - llh_paramset = hypo_paramset, - fig_text = gen_figtext(args), - labels = labels - ) - - print "DONE!" - - -main.__doc__ = __doc__ - - -if __name__ == '__main__': - main() |
