aboutsummaryrefslogtreecommitdiffstats
path: root/fig2.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2019-03-08 13:36:58 -0600
committershivesh <s.p.mandalia@qmul.ac.uk>2019-03-08 13:36:58 -0600
commitc614f7216177745ddea1171d7ca0c6e68c378c17 (patch)
tree159db8cb4a8ad1d39d521d8ecef9e86d36aa671b /fig2.py
parente0df6e7e5aea33c030ed63fe3d3319fcc9072661 (diff)
downloadGolemFlavor-c614f7216177745ddea1171d7ca0c6e68c378c17.tar.gz
GolemFlavor-c614f7216177745ddea1171d7ca0c6e68c378c17.zip
Fri 8 Mar 13:36:58 CST 2019
Diffstat (limited to 'fig2.py')
-rwxr-xr-xfig2.py180
1 files changed, 180 insertions, 0 deletions
diff --git a/fig2.py b/fig2.py
new file mode 100755
index 0000000..90aca90
--- /dev/null
+++ b/fig2.py
@@ -0,0 +1,180 @@
+#! /usr/bin/env python
+# author : S. Mandalia
+# s.p.mandalia@qmul.ac.uk
+#
+# date : February 24, 2019
+
+"""
+HESE BSM Flavour Figure 2
+"""
+
+from __future__ import absolute_import, division
+
+import argparse
+from functools import partial
+
+import numpy as np
+
+from utils import fr as fr_utils
+from utils import misc as misc_utils
+from utils import plot as plot_utils
+from utils.enums import str_enum
+from utils.enums import Likelihood, ParamTag, PriorsCateg
+from utils.param import Param, ParamSet
+
+from matplotlib import pyplot as plt
+
+from pymultinest import Analyzer
+
+
+def define_nuisance():
+ """Define the nuisance parameters."""
+ nuisance = []
+ tag = ParamTag.NUISANCE
+ lg_prior = PriorsCateg.LIMITEDGAUSS
+ nuisance.extend([
+ Param(name='convNorm', value=1., seed=[0.5, 2. ], ranges=[0.1, 10.], std=0.4, prior=lg_prior, tag=tag),
+ Param(name='promptNorm', value=0., seed=[0. , 6. ], ranges=[0. , 20.], std=2.4, prior=lg_prior, tag=tag),
+ Param(name='muonNorm', value=1., seed=[0.1, 2. ], ranges=[0. , 10.], std=0.1, tag=tag),
+ Param(name='astroNorm', value=6.9, seed=[0., 5. ], ranges=[0. , 20.], std=1.5, tag=tag),
+ Param(name='astroDeltaGamma', value=2.5, seed=[2.4, 3. ], ranges=[-5., 5. ], std=0.1, tag=tag)
+ ])
+ return ParamSet(nuisance)
+
+
+def get_paramsets(args, nuisance_paramset):
+ paramset = []
+ if args.likelihood in [Likelihood.GOLEMFIT, Likelihood.GF_FREQ]:
+ gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)]
+ paramset.extend(gf_nuisance)
+ tag = ParamTag.BESTFIT
+ paramset.extend([
+ Param(name='astroFlavorAngle1', value=0, ranges=[0., 1.], std=0.2, tag=tag),
+ Param(name='astroFlavorAngle2', value=0, ranges=[-1., 1.], std=0.2, tag=tag),
+ ])
+ paramset = ParamSet(paramset)
+ return paramset
+
+
+def process_args(args):
+ """Process the input args."""
+ if args.likelihood is not Likelihood.GOLEMFIT \
+ and args.likelihood is not Likelihood.GF_FREQ:
+ raise AssertionError(
+ 'Likelihood method {0} not supported for this '
+ 'script!\nChoose either GOLEMFIT or GF_FREQ'.format(
+ str_enum(args.likelihood)
+ )
+ )
+
+def parse_args(args=None):
+ """Parse command line arguments"""
+ parser = argparse.ArgumentParser(
+ description="HESE BSM Flavour Figure 2",
+ formatter_class=misc_utils.SortingHelpFormatter,
+ )
+ parser.add_argument(
+ '--likelihood', default='golemfit',
+ type=partial(misc_utils.enum_parse, c=Likelihood),
+ choices=Likelihood, help='likelihood contour'
+ )
+ parser.add_argument(
+ '--contour-dir', type=str,
+ help='Path to directory containing MultiNest runs'
+ )
+ parser.add_argument(
+ '--outfile', type=str, default='./untitled',
+ help='Output path'
+ )
+ if args is None: return parser.parse_args()
+ else: return parser.parse_args(args.split())
+
+
+def main():
+ args = parse_args()
+ process_args(args)
+ misc_utils.print_args(args)
+
+ paramset = get_paramsets(args, define_nuisance())
+ n_params = len(paramset)
+ print n_params
+
+ # Data
+ data_path = '{0}/{1}/real'.format(
+ args.contour_dir, str_enum(args.likelihood).lower()
+ )
+ prefix = '{0}/_{1}_REAL_mn_'.format(data_path, str_enum(args.likelihood))
+ analyser = Analyzer(
+ outputfiles_basename=prefix, n_params=n_params
+ )
+ print analyser
+
+ pranges = paramset.ranges
+
+ bf = analyser.get_best_fit()['parameters']
+ for i in xrange(len(bf)):
+ bf[i] = (pranges[i][1]-pranges[i][0])*bf[i] + pranges[i][0]
+ print 'bestfit = ', bf
+ print 'bestfit log_likelihood', analyser.get_best_fit()['log_likelihood']
+
+ print
+ print '{0:50} = {1}'.format('global evidence', analyser.get_stats()['global evidence'])
+ print
+
+ chains = analyser.get_data()[:,2:]
+ for x in chains:
+ for i in xrange(len(x)):
+ x[i] = (pranges[i][1]-pranges[i][0])*x[i] + pranges[i][0]
+
+ llh = -0.5 * analyser.get_data()[:,1]
+
+ flavour_angles = chains[:,-2:]
+ flavour_ratios = np.array(
+ map(fr_utils.angles_to_fr, flavour_angles)
+ )
+
+ nbins = 25
+
+ fig = plt.figure(figsize=(8, 8))
+ ax = fig.add_subplot(111)
+ tax = plot_utils.get_tax(ax, scale=nbins)
+
+ plot_utils.flavour_contour(
+ frs = flavour_ratios,
+ ax = ax,
+ nbins = nbins,
+ coverage = 99,
+ linewidth = 2,
+ color = 'green'
+ )
+
+ plot_utils.flavour_contour(
+ frs = flavour_ratios,
+ ax = ax,
+ nbins = nbins,
+ coverage = 90,
+ linewidth = 2,
+ color = 'blue'
+ )
+
+ plot_utils.flavour_contour(
+ frs = flavour_ratios,
+ ax = ax,
+ nbins = nbins,
+ coverage = 68,
+ linewidth = 2,
+ color = 'red'
+ )
+
+ ax.legend()
+
+ fig.savefig('test.png', bbox_inches='tight', dpi=150)
+
+ print "DONE!"
+
+
+main.__doc__ = __doc__
+
+
+if __name__ == '__main__':
+ main()