diff options
| author | Shivesh Mandalia <shivesh.mandalia@outlook.com> | 2020-02-28 18:39:45 +0000 |
|---|---|---|
| committer | Shivesh Mandalia <shivesh.mandalia@outlook.com> | 2020-02-28 18:39:45 +0000 |
| commit | 402f8b53dd892b8fd44ae5ad45eac91b5f6b3750 (patch) | |
| tree | b619c6efb0eb303e164bbd27691cdd9f8fce36a2 /golemflavor/fr.py | |
| parent | 3a5a6c658e45402d413970e8d273a656ed74dcf5 (diff) | |
| download | GolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.tar.gz GolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.zip | |
reogranise into a python package
Diffstat (limited to 'golemflavor/fr.py')
| -rw-r--r-- | golemflavor/fr.py | 531 |
1 files changed, 531 insertions, 0 deletions
diff --git a/golemflavor/fr.py b/golemflavor/fr.py new file mode 100644 index 0000000..bf0fb56 --- /dev/null +++ b/golemflavor/fr.py @@ -0,0 +1,531 @@ +# author : S. Mandalia +# s.p.mandalia@qmul.ac.uk +# +# date : March 17, 2018 + +""" +Useful functions for the BSM flavour ratio analysis +""" + +from __future__ import absolute_import, division + +from functools import partial + +import numpy as np + +from utils.enums import ParamTag, Texture +from utils.misc import enum_parse, parse_bool + +import mpmath as mp +mp.mp.dps = 100 # Computation precision + +# DTYPE = np.float128 +# CDTYPE = np.complex256 +# PI = np.arccos(DTYPE(-1)) +# SQRT = np.sqrt +# COS = np.cos +# SIN = np.sin +# ACOS = np.arccos +# ASIN = np.arcsin +# EXP = np.exp + +DTYPE = mp.mpf +CDTYPE = mp.mpc +PI = mp.pi +SQRT = mp.sqrt +COS = mp.cos +SIN = mp.sin +ACOS = mp.acos +ASIN = mp.asin +EXP = mp.exp + +MASS_EIGENVALUES = [7.40E-23, 2.515E-21] +"""SM mass eigenvalues.""" + +SCALE_BOUNDARIES = { + 3 : (-32, -20), + 4 : (-40, -24), + 5 : (-48, -27), + 6 : (-56, -30), + 7 : (-64, -33), + 8 : (-72, -36) +} +"""Boundaries to scan the NP scale for each dimension.""" + + +def determinant(x): + """Calculate the determininant of a 3x3 matrix. + + Parameters + ---------- + x : ndarray, shape = (3, 3) + + Returns + ---------- + float determinant + + Examples + ---------- + >>> print determinant( + >>> [[-1.65238188-0.59549718j, 0.27486548-0.18437467j, -1.35524534-0.38542072j], + >>> [-1.07480906+0.29630449j, -0.47808456-0.80316821j, -0.88609356-1.50737308j], + >>> [-0.14924144-0.99230446j, 0.49504234+0.63639805j, 2.29258915-0.36537507j]] + >>> ) + (2.7797571563274688+3.0841795325804848j) + + """ + return (x[0][0] * (x[1][1] * x[2][2] - x[2][1] * x[1][2]) + -x[1][0] * (x[0][1] * x[2][2] - x[2][1] * x[0][2]) + +x[2][0] * (x[0][1] * x[1][2] - x[1][1] * x[0][2])) + + +def angles_to_fr(src_angles): + """Convert angular projection of the source flavour ratio back into the + flavour ratio. + + Parameters + ---------- + src_angles : list, length = 2 + sin(phi)^4 and cos(psi)^2 + + Returns + ---------- + flavour ratios (nue, numu, nutau) + + Examples + ---------- + >>> print angles_to_fr((0.3, 0.4)) + (0.38340579025361626, 0.16431676725154978, 0.45227744249483393) + + """ + sphi4, c2psi = map(DTYPE, src_angles) + + psi = (0.5)*ACOS(c2psi) + + sphi2 = SQRT(sphi4) + cphi2 = 1. - sphi2 + spsi2 = SIN(psi)**2 + cspi2 = 1. - spsi2 + + x = float(abs(sphi2*cspi2)) + y = float(abs(sphi2*spsi2)) + z = float(abs(cphi2)) + return x, y, z + + +def angles_to_u(bsm_angles): + """Convert angular projection of the mixing matrix elements back into the + mixing matrix elements. + + Parameters + ---------- + bsm_angles : list, length = 4 + sin(12)^2, cos(13)^4, sin(23)^2 and deltacp + + Returns + ---------- + unitary numpy ndarray of shape (3, 3) + + Examples + ---------- + >>> from fr import angles_to_u + >>> print angles_to_u((0.2, 0.3, 0.5, 1.5)) + array([[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ], + [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ], + [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]]) + + """ + s12_2, c13_4, s23_2, dcp = map(DTYPE, bsm_angles) + dcp = CDTYPE(dcp) + + c12_2 = 1. - s12_2 + c13_2 = SQRT(c13_4) + s13_2 = 1. - c13_2 + c23_2 = 1. - s23_2 + + t12 = ASIN(SQRT(s12_2)) + t13 = ACOS(SQRT(c13_2)) + t23 = ASIN(SQRT(s23_2)) + + c12 = COS(t12) + s12 = SIN(t12) + c13 = COS(t13) + s13 = SIN(t13) + c23 = COS(t23) + s23 = SIN(t23) + + p1 = np.array([[1 , 0 , 0] , [0 , c23 , s23] , [0 , -s23 , c23]] , dtype=CDTYPE) + p2 = np.array([[c13 , 0 , s13*EXP(-1j*dcp)] , [0 , 1 , 0] , [-s13*EXP(1j*dcp) , 0 , c13]] , dtype=CDTYPE) + p3 = np.array([[c12 , s12 , 0] , [-s12 , c12 , 0] , [0 , 0 , 1]] , dtype=CDTYPE) + + u = np.dot(np.dot(p1, p2), p3) + return u + + +def cardano_eqn(ham): + """Diagonalise the effective Hamiltonian 3x3 matrix into the form + h_{eff} = UE_{eff}U^{dagger} using the procedure in PRD91, 052003 (2015). + + Parameters + ---------- + ham : numpy ndarray of shape (3, 3) + sin(12)^2, cos(13)^4, sin(23)^2 and deltacp + + Returns + ---------- + unitary numpy ndarray of shape (3, 3) + + Examples + ---------- + >>> import numpy as np + >>> from fr import cardano_eqn + >>> ham = np.array( + >>> [[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ], + >>> [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ], + >>> [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]] + >>> ) + >>> print cardano_eqn(ham) + array([[-0.11143379-0.58863683j, -0.09067747-0.48219068j, 0.34276625-0.08686465j], + [ 0.14835519+0.47511473j, -0.18299305+0.40777481j, 0.31906300+0.82514223j], + [-0.62298966+0.07231745j, -0.61407815-0.42709603j, 0.03660313+0.30160428j]]) + + """ + if np.shape(ham) != (3, 3): + raise ValueError( + 'Input matrix should be a square and dimension 3, ' + 'got\n{0}'.format(ham) + ) + + a = -np.trace(ham) + b = DTYPE(1)/2 * ((np.trace(ham))**DTYPE(2) - np.trace(np.dot(ham, ham))) + c = -determinant(ham) + + Q = (DTYPE(1)/9) * (a**DTYPE(2) - DTYPE(3)*b) + R = (DTYPE(1)/54) * (DTYPE(2)*a**DTYPE(3) - DTYPE(9)*a*b + DTYPE(27)*c) + theta = ACOS(R / SQRT(Q**DTYPE(3))) + + E1 = -DTYPE(2) * SQRT(Q) * COS(theta/DTYPE(3)) - (DTYPE(1)/3)*a + E2 = -DTYPE(2) * SQRT(Q) * COS((theta - DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a + E3 = -DTYPE(2) * SQRT(Q) * COS((theta + DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a + + A1 = ham[1][2] * (ham[0][0] - E1) - ham[1][0]*ham[0][2] + A2 = ham[1][2] * (ham[0][0] - E2) - ham[1][0]*ham[0][2] + A3 = ham[1][2] * (ham[0][0] - E3) - ham[1][0]*ham[0][2] + + B1 = ham[2][0] * (ham[1][1] - E1) - ham[2][1]*ham[1][0] + B2 = ham[2][0] * (ham[1][1] - E2) - ham[2][1]*ham[1][0] + B3 = ham[2][0] * (ham[1][1] - E3) - ham[2][1]*ham[1][0] + + C1 = ham[1][0] * (ham[2][2] - E1) - ham[1][2]*ham[2][0] + C2 = ham[1][0] * (ham[2][2] - E2) - ham[1][2]*ham[2][0] + C3 = ham[1][0] * (ham[2][2] - E3) - ham[1][2]*ham[2][0] + + N1 = SQRT(np.abs(A1*B1)**2 + np.abs(A1*C1)**2 + np.abs(B1*C1)**2) + N2 = SQRT(np.abs(A2*B2)**2 + np.abs(A2*C2)**2 + np.abs(B2*C2)**2) + N3 = SQRT(np.abs(A3*B3)**2 + np.abs(A3*C3)**2 + np.abs(B3*C3)**2) + + mm = np.array([ + [np.conjugate(B1)*C1 / N1, np.conjugate(B2)*C2 / N2, np.conjugate(B3)*C3 / N3], + [A1*C1 / N1, A2*C2 / N2, A3*C3 / N3], + [A1*B1 / N1, A2*B2 / N2, A3*B3 / N3] + ]) + return mm + + +def normalise_fr(fr): + """Normalise an input flavour combination to a flavour ratio. + + Parameters + ---------- + fr : list, length = 3 + flavour combination + + Returns + ---------- + numpy ndarray flavour ratio + + Examples + ---------- + >>> from fr import normalise_fr + >>> print normalise_fr((1, 2, 3)) + array([ 0.16666667, 0.33333333, 0.5 ]) + + """ + return np.array(fr) / float(np.sum(fr)) + + +def fr_argparse(parser): + parser.add_argument( + '--injected-ratio', type=float, nargs=3, required=False, + help='Injected ratio if not using data' + ) + parser.add_argument( + '--source-ratio', type=float, nargs=3, default=[1, 2, 0], + help='Set the source flavour ratio for the case when you want to fix it' + ) + parser.add_argument( + '--no-bsm', type=parse_bool, default='False', + help='Turn off BSM terms' + ) + parser.add_argument( + '--dimension', type=int, default=3, + help='Set the new physics dimension to consider' + ) + parser.add_argument( + '--texture', type=partial(enum_parse, c=Texture), + default='none', choices=Texture, help='Set the BSM mixing texture' + ) + parser.add_argument( + '--binning', default=[6e4, 1e7, 20], type=float, nargs=3, + help='Binning for spectral energy dependance' + ) + + +def fr_to_angles(ratios): + """Convert from flavour ratio into the angular projection of the flavour + ratios. + + Parameters + ---------- + TODO(shivesh) + """ + fr0, fr1, fr2 = normalise_fr(ratios) + + cphi2 = fr2 + sphi2 = (1.0 - cphi2) + + if sphi2 == 0.: + return (0., 0.) + else: + cpsi2 = fr0 / sphi2 + + sphi4 = sphi2**2 + c2psi = COS(ACOS(SQRT(cpsi2))*2) + + return map(float, (sphi4, c2psi)) + + +NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935)) +"""NuFIT mixing matrix (s_12^2, c_13^4, s_23^2, dcp)""" + + +def params_to_BSMu(bsm_angles, dim, energy, mass_eigenvalues=MASS_EIGENVALUES, + sm_u=NUFIT_U, no_bsm=False, texture=Texture.NONE, + check_uni=True, epsilon=1e-7): + """Construct the BSM mixing matrix from the BSM parameters. + + Parameters + ---------- + bsm_angles : list, length > 3 + BSM parameters + + dim : int + Dimension of BSM physics + + energy : float + Energy in GeV + + mass_eigenvalues : list, length = 2 + SM mass eigenvalues + + sm_u : numpy ndarray, dimension 3 + SM mixing matrix + + no_bsm : bool + Turn off BSM behaviour + + texture : Texture + BSM mixing texture + + check_uni : bool + Check the resulting BSM mixing matrix is unitary + + Returns + ---------- + unitary numpy ndarray of shape (3, 3) + + Examples + ---------- + >>> from fr import params_to_BSMu + >>> print params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), dim=3, energy=1000) + array([[ 0.18658169 -6.34190523e-01j, -0.26460391 +2.01884200e-01j, 0.67247096 -9.86808417e-07j], + [-0.50419832 +2.14420570e-01j, -0.36013768 +5.44254868e-01j, 0.03700961 +5.22039894e-01j], + [-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]]) + + """ + if np.shape(sm_u) != (3, 3): + raise ValueError( + 'Input matrix should be a square and dimension 3, ' + 'got\n{0}'.format(sm_u) + ) + + if not isinstance(bsm_angles, (list, tuple)): + bsm_angles = [bsm_angles] + + z = 0.+1e-9 + if texture is Texture.OEU: + np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = 0.5, 1.0, z, z, bsm_angles + elif texture is Texture.OET: + np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = z, 0.25, z, z, bsm_angles + elif texture is Texture.OUT: + np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = z, 1.0, 0.5, z, bsm_angles + else: + np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = bsm_angles + + sc2 = np.power(10., sc2) + sc1 = sc2 / 100. + + mass_matrix = np.array( + [[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]] + ) + sm_ham = (1./(2*energy))*np.dot(sm_u, np.dot(mass_matrix, sm_u.conj().T)) + if no_bsm: + eg_vector = cardano_eqn(sm_ham) + else: + NP_U = angles_to_u((np_s12_2, np_c13_4, np_s23_2, np_dcp)) + SC_U = np.array( + [[0, 0, 0], [0, sc1, 0], [0, 0, sc2]] + ) + bsm_term = (energy**(dim-3)) * np.dot(NP_U, np.dot(SC_U, NP_U.conj().T)) + bsm_ham = sm_ham + bsm_term + eg_vector = cardano_eqn(bsm_ham) + + if check_uni: + test_unitarity(eg_vector, rse=True, epsilon=epsilon) + return eg_vector + + +def flux_averaged_BSMu(theta, args, spectral_index, llh_paramset): + if len(theta) != len(llh_paramset): + raise AssertionError( + 'Length of MCMC scan is not the same as the input ' + 'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset) + ) + + for idx, param in enumerate(llh_paramset): + param.value = theta[idx] + + bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:]) + bin_width = np.abs(np.diff(args.binning)) + + source_flux = np.array( + [fr * np.power(bin_centers, spectral_index) + for fr in args.source_ratio] + ).T + + bsm_angles = llh_paramset.from_tag( + [ParamTag.SCALE, ParamTag.MMANGLES], values=True + ) + + m_eig_names = ['m21_2', 'm3x_2'] + ma_names = ['s_12_2', 'c_13_4', 's_23_2', 'dcp'] + + if set(m_eig_names+ma_names).issubset(set(llh_paramset.names)): + mass_eigenvalues = [x.value for x in llh_paramset if x.name in m_eig_names] + sm_u = angles_to_u( + [x.value for x in llh_paramset if x.name in ma_names] + ) + else: + mass_eigenvalues = MASS_EIGENVALUES + sm_u = NUFIT_U + + if args.no_bsm: + fr = u_to_fr(source_flux, np.array(sm_u, dtype=np.complex256)) + else: + mf_perbin = [] + for i_sf, sf_perbin in enumerate(source_flux): + u = params_to_BSMu( + bsm_angles = bsm_angles, + dim = args.dimension, + energy = bin_centers[i_sf], + mass_eigenvalues = mass_eigenvalues, + sm_u = sm_u, + no_bsm = args.no_bsm, + texture = args.texture, + ) + fr = u_to_fr(sf_perbin, u) + mf_perbin.append(fr) + measured_flux = np.array(mf_perbin).T + intergrated_measured_flux = np.sum(measured_flux * bin_width, axis=1) + averaged_measured_flux = (1./(args.binning[-1] - args.binning[0])) * \ + intergrated_measured_flux + fr = averaged_measured_flux / np.sum(averaged_measured_flux) + return fr + + +def test_unitarity(x, prnt=False, rse=False, epsilon=None): + """Test the unitarity of a matrix. + + Parameters + ---------- + x : numpy ndarray + Matrix to evaluate + + prnt : bool + Print the result + + rse : bool + Raise Assertion if matrix is not unitary + + Returns + ---------- + numpy ndarray + + Examples + ---------- + >>> from fr import test_unitarity + >>> x = np.identity(3) + >>> print test_unitarity(x) + array([[ 1., 0., 0.], + [ 0., 1., 0.], + [ 0., 0., 1.]]) + + """ + f = np.abs(np.dot(x, x.conj().T), dtype=DTYPE) + if prnt: + print 'Unitarity test:\n{0}'.format(f) + if rse: + if not np.abs(np.trace(f) - 3.) < epsilon or \ + not np.abs(np.sum(f) - 3.) < epsilon: + raise AssertionError( + 'Matrix is not unitary!\nx\n{0}\ntest ' + 'u\n{1}'.format(x, f) + ) + return f + + +def u_to_fr(source_fr, matrix): + """Compute the observed flavour ratio assuming decoherence. + + Parameters + ---------- + source_fr : list, length = 3 + Source flavour ratio components + + matrix : numpy ndarray, dimension 3 + Mixing matrix + + Returns + ---------- + Measured flavour ratio + + Examples + ---------- + >>> from fr import params_to_BSMu, u_to_fr + >>> print u_to_fr((1, 2, 0), params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), 3, 1000)) + array([ 0.33740075, 0.33176584, 0.33083341]) + + """ + try: + composition = np.einsum( + 'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr, + ) + except: + matrix = np.array(matrix, dtype=np.complex256) + composition = np.einsum( + 'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr, + ) + pass + + ratio = composition / np.sum(source_fr) + return ratio |
