diff options
| author | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-04-28 20:45:22 -0500 |
|---|---|---|
| committer | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-04-28 20:45:22 -0500 |
| commit | bcc0cc720a6e28eeb5b48c2d4ad16924751e75ff (patch) | |
| tree | dddbff6944c801192b531dad7184366f5995b515 /sens.py | |
| parent | c37932036698600c7b44d2ff15aac6784d201098 (diff) | |
| download | GolemFlavor-bcc0cc720a6e28eeb5b48c2d4ad16924751e75ff.tar.gz GolemFlavor-bcc0cc720a6e28eeb5b48c2d4ad16924751e75ff.zip | |
Sat Apr 28 20:45:22 CDT 2018
Diffstat (limited to 'sens.py')
| -rwxr-xr-x | sens.py | 17 |
1 files changed, 11 insertions, 6 deletions
@@ -84,10 +84,6 @@ def process_args(args): '--sens-run and --fix-scale cannot be used together' ) - if args.sens_eval_bin is not None and args.plot_statistic: - print 'Cannot make plot when specific scale bin is chosen' - args.plot_statistic = False - args.measured_ratio = fr_utils.normalise_fr(args.measured_ratio) if args.fix_source_ratio: args.source_ratio = fr_utils.normalise_fr(args.source_ratio) @@ -96,6 +92,10 @@ def process_args(args): args.binning = np.logspace( np.log10(args.binning[0]), np.log10(args.binning[1]), args.binning[2]+1 ) + if args.likelihood is Likelihood.GOLEMFIT: + print 'GolemFit selected with spectral index energy dependance, ' \ + 'will attempt to use the astroDeltaGamma systematic to fold ' \ + 'in the spectral index.' if not args.fix_scale: args.scale = fr_utils.estimate_scale(args) @@ -106,6 +106,10 @@ def process_args(args): else: args.sens_eval_bin = int(args.sens_eval_bin) + if args.sens_eval_bin is not None and args.plot_statistic: + print 'Cannot make plot when specific scale bin is chosen' + args.plot_statistic = False + if args.stat_method is StatCateg.FREQUENTIST and \ args.likelihood is Likelihood.GOLEMFIT: args.likelihood = Likelihood.GF_FREQ @@ -285,12 +289,12 @@ def main(): llh_paramset[name].value = \ (pranges[i][1]-pranges[i][0])*x[i] + pranges[i][0] theta = llh_paramset.values - print 'llh_paramset', llh_paramset llh = llh_utils.ln_prob( theta=theta, args=args, asimov_paramset=asimov_paramset, llh_paramset=llh_paramset, fitter=fitter ) - print 'llh', llh + # print 'llh_paramset', llh_paramset + # print 'llh', llh return -llh n_params = len(sens_paramset) @@ -321,6 +325,7 @@ def main(): np.save(out+'.npy', statistic_arr) if args.plot_statistic: + print 'Plotting statistic' if args.sens_run: raw = statistic_arr else: raw = np.load(out+'.npy') data = ma.masked_invalid(raw, 0) |
