aboutsummaryrefslogtreecommitdiffstats
path: root/submitter/make_dag.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-04-10 11:12:44 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-04-10 11:12:44 -0500
commit01c77997f4212085a1cedc049e6c6bca98a5c1b6 (patch)
tree670789202e71876abf46677ed91bba28dd642b17 /submitter/make_dag.py
parente1fa7270eeb9219865446cb8ceb4a5762f6aab9b (diff)
downloadGolemFlavor-01c77997f4212085a1cedc049e6c6bca98a5c1b6.tar.gz
GolemFlavor-01c77997f4212085a1cedc049e6c6bca98a5c1b6.zip
updates
Diffstat (limited to 'submitter/make_dag.py')
-rw-r--r--submitter/make_dag.py115
1 files changed, 58 insertions, 57 deletions
diff --git a/submitter/make_dag.py b/submitter/make_dag.py
index 133819b..627e3ff 100644
--- a/submitter/make_dag.py
+++ b/submitter/make_dag.py
@@ -16,30 +16,30 @@ full_scan_mfr = [
]
fix_sfr_mfr = [
- (1, 1, 1, 1, 0, 0),
- (1, 1, 1, 0, 1, 0),
- (1, 1, 1, 0, 0, 1),
+ # (1, 1, 1, 1, 0, 0),
+ # (1, 1, 1, 0, 1, 0),
+ # (1, 1, 1, 0, 0, 1),
(1, 1, 1, 1, 2, 0),
(1, 1, 0, 0, 1, 0),
- (1, 1, 0, 1, 2, 0),
- (1, 1, 0, 1, 0, 0),
- (1, 0, 0, 1, 0, 0),
- (0, 1, 0, 0, 1, 0),
- (1, 2, 0, 0, 1, 0),
- (1, 2, 0, 1, 2, 0)
+ # (1, 1, 0, 1, 2, 0),
+ # (1, 1, 0, 1, 0, 0),
+ # (1, 0, 0, 1, 0, 0),
+ # (0, 1, 0, 0, 1, 0),
+ # (1, 2, 0, 0, 1, 0),
+ # (1, 2, 0, 1, 2, 0)
]
# MCMC
run_mcmc = 'True'
burnin = 1000
nsteps = 4000
-nwalkers = 70
+nwalkers = 60
seed = 24
-threads = 12
+threads = 4
mcmc_seed_type = 'uniform'
# FR
-dimension = [3, 6]
+dimension = [6]
energy = [1e6]
likelihood = 'golemfit'
no_bsm = 'False'
@@ -49,6 +49,7 @@ scale_region = "1E10"
energy_dependance = 'spectral'
spectral_index = -2
binning = [1e4, 1e7, 10]
+fix_mixing = 'False'
# Likelihood
likelihood = 'golemfit'
@@ -108,7 +109,7 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tnwalkers="{1}"\n'.format(job_number, nwalkers))
f.write('VARS\tjob{0}\tnsteps="{1}"\n'.format(job_number, nsteps))
f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
- f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, 'False'))
+ f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, fix_mixing))
f.write('VARS\tjob{0}\tno_bsm="{1}"\n'.format(job_number, no_bsm))
f.write('VARS\tjob{0}\trun_mcmc="{1}"\n'.format(job_number, run_mcmc))
f.write('VARS\tjob{0}\tastroDeltaGamma="{1}"\n'.format(job_number, astroDeltaGamma))
@@ -131,47 +132,47 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2]))
job_number += 1
- for frs in full_scan_mfr:
- print frs
- outchains = outchain_head + '/full_scan/{0}/mcmc_chain'.format(str(sig).replace('.', '_'))
- f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
- f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
- f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
- f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
- f.write('VARS\tjob{0}\tsigma_ratio="{1}"\n'.format(job_number, sig))
- f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, 'False'))
- f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tfix_scale="{1}"\n'.format(job_number, 'False'))
- f.write('VARS\tjob{0}\tscale="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tscale_region="{1}"\n'.format(job_number, scale_region))
- f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
- f.write('VARS\tjob{0}\tenergy="{1}"\n'.format(job_number, en))
- f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
- f.write('VARS\tjob{0}\tburnin="{1}"\n'.format(job_number, burnin))
- f.write('VARS\tjob{0}\tnwalkers="{1}"\n'.format(job_number, nwalkers))
- f.write('VARS\tjob{0}\tnsteps="{1}"\n'.format(job_number, nsteps))
- f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
- f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, 'False'))
- f.write('VARS\tjob{0}\tno_bsm="{1}"\n'.format(job_number, no_bsm))
- f.write('VARS\tjob{0}\trun_mcmc="{1}"\n'.format(job_number, run_mcmc))
- f.write('VARS\tjob{0}\tastroDeltaGamma="{1}"\n'.format(job_number, astroDeltaGamma))
- f.write('VARS\tjob{0}\tastroNorm="{1}"\n'.format(job_number, astroNorm))
- f.write('VARS\tjob{0}\tconvNorm="{1}"\n'.format(job_number, convNorm))
- f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm))
- f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm))
- f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data))
- f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast))
- f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles))
- f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
- f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
- f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
- f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
- f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
- f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance))
- f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index))
- f.write('VARS\tjob{0}\tbinning_0="{1}"\n'.format(job_number, binning[0]))
- f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1]))
- f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2]))
- job_number += 1
+ # for frs in full_scan_mfr:
+ # print frs
+ # outchains = outchain_head + '/full_scan/{0}/mcmc_chain'.format(str(sig).replace('.', '_'))
+ # f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
+ # f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
+ # f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
+ # f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
+ # f.write('VARS\tjob{0}\tsigma_ratio="{1}"\n'.format(job_number, sig))
+ # f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, 'False'))
+ # f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
+ # f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
+ # f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
+ # f.write('VARS\tjob{0}\tfix_scale="{1}"\n'.format(job_number, 'False'))
+ # f.write('VARS\tjob{0}\tscale="{1}"\n'.format(job_number, 0))
+ # f.write('VARS\tjob{0}\tscale_region="{1}"\n'.format(job_number, scale_region))
+ # f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
+ # f.write('VARS\tjob{0}\tenergy="{1}"\n'.format(job_number, en))
+ # f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
+ # f.write('VARS\tjob{0}\tburnin="{1}"\n'.format(job_number, burnin))
+ # f.write('VARS\tjob{0}\tnwalkers="{1}"\n'.format(job_number, nwalkers))
+ # f.write('VARS\tjob{0}\tnsteps="{1}"\n'.format(job_number, nsteps))
+ # f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
+ # f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, fix_mixing))
+ # f.write('VARS\tjob{0}\tno_bsm="{1}"\n'.format(job_number, no_bsm))
+ # f.write('VARS\tjob{0}\trun_mcmc="{1}"\n'.format(job_number, run_mcmc))
+ # f.write('VARS\tjob{0}\tastroDeltaGamma="{1}"\n'.format(job_number, astroDeltaGamma))
+ # f.write('VARS\tjob{0}\tastroNorm="{1}"\n'.format(job_number, astroNorm))
+ # f.write('VARS\tjob{0}\tconvNorm="{1}"\n'.format(job_number, convNorm))
+ # f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm))
+ # f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm))
+ # f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data))
+ # f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast))
+ # f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles))
+ # f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
+ # f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
+ # f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
+ # f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
+ # f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
+ # f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance))
+ # f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index))
+ # f.write('VARS\tjob{0}\tbinning_0="{1}"\n'.format(job_number, binning[0]))
+ # f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1]))
+ # f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2]))
+ # job_number += 1