aboutsummaryrefslogtreecommitdiffstats
path: root/submitter/make_dag.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-04-13 22:00:22 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-04-13 22:00:22 -0500
commitae60ec260f8939c952167035df5b6957fdfa4e9a (patch)
treedc8951c9c45ec1dcf71f7a29462ee2db7f9012ae /submitter/make_dag.py
parentc99b8f88714e86c98eb22b10065583343f3748fe (diff)
downloadGolemFlavor-ae60ec260f8939c952167035df5b6957fdfa4e9a.tar.gz
GolemFlavor-ae60ec260f8939c952167035df5b6957fdfa4e9a.zip
Fri Apr 13 22:00:22 CDT 2018
Diffstat (limited to 'submitter/make_dag.py')
-rw-r--r--submitter/make_dag.py231
1 files changed, 122 insertions, 109 deletions
diff --git a/submitter/make_dag.py b/submitter/make_dag.py
index 641e00e..be13ac8 100644
--- a/submitter/make_dag.py
+++ b/submitter/make_dag.py
@@ -12,7 +12,7 @@ f_fr = (2, 1, 0)
g_fr = (1, 1, 0)
full_scan_mfr = [
- (1, 1, 1), (1, 1, 0)
+ # (1, 1, 1), (1, 1, 0)
]
fix_sfr_mfr = [
@@ -35,11 +35,11 @@ burnin = 500
nsteps = 2000
nwalkers = 60
seed = 24
-threads = 12
+threads = 4
mcmc_seed_type = 'uniform'
# FR
-dimension = [3, 6]
+dimension = [6]
energy = [1e6]
likelihood = 'golemfit'
no_bsm = 'False'
@@ -56,30 +56,35 @@ fix_mixing_almost = 'False'
likelihood = 'golemfit'
# Nuisance
-astroDeltaGamma = 2.
-astroNorm = 1.
convNorm = 1.
-muonNorm = 1.
promptNorm = 0.
+muonNorm = 1.
+astroNorm = 6.9
+astroDeltaGamma = 2.5
# GolemFit
ast = 'p2_0'
data = 'real'
# Bayes Factor
-run_bayes_factor = 'True'
+run_bayes_factor = 'False'
bayes_bins = 10
bayes_live_points = 200
+bayes_tolerance = 0.01
+bayes_eval_bin = True # set to 'all' to run normally
# Plot
plot_angles = 'False'
plot_elements = 'False'
-plot_bayes = 'True'
+plot_bayes = 'False'
outfile = 'dagman_FR.submit'
golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit'
condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/submit.sub'
+if bayes_eval_bin != 'all': b_runs = bayes_bins
+else: b_runs = 1
+
with open(outfile, 'w') as f:
job_number = 1
for dim in dimension:
@@ -101,104 +106,112 @@ with open(outfile, 'w') as f:
if run_bayes_factor == 'True':
bayes_output = outchains + '/bayes_factor/'
outchains += 'mcmc_chain'
- f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
- f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
- f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
- f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
- f.write('VARS\tjob{0}\tsigma_ratio="{1}"\n'.format(job_number, sig))
- f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, 'True'))
- f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, frs[3]))
- f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, frs[4]))
- f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, frs[5]))
- f.write('VARS\tjob{0}\tfix_scale="{1}"\n'.format(job_number, 'False'))
- f.write('VARS\tjob{0}\tscale="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tscale_region="{1}"\n'.format(job_number, scale_region))
- f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
- f.write('VARS\tjob{0}\tenergy="{1}"\n'.format(job_number, en))
- f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
- f.write('VARS\tjob{0}\tburnin="{1}"\n'.format(job_number, burnin))
- f.write('VARS\tjob{0}\tnwalkers="{1}"\n'.format(job_number, nwalkers))
- f.write('VARS\tjob{0}\tnsteps="{1}"\n'.format(job_number, nsteps))
- f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
- f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, fix_mixing))
- f.write('VARS\tjob{0}\tno_bsm="{1}"\n'.format(job_number, no_bsm))
- f.write('VARS\tjob{0}\trun_mcmc="{1}"\n'.format(job_number, run_mcmc))
- f.write('VARS\tjob{0}\tastroDeltaGamma="{1}"\n'.format(job_number, astroDeltaGamma))
- f.write('VARS\tjob{0}\tastroNorm="{1}"\n'.format(job_number, astroNorm))
- f.write('VARS\tjob{0}\tconvNorm="{1}"\n'.format(job_number, convNorm))
- f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm))
- f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm))
- f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data))
- f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast))
- f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles))
- f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
- f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
- f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
- f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
- f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
- f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance))
- f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index))
- f.write('VARS\tjob{0}\tbinning_0="{1}"\n'.format(job_number, binning[0]))
- f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1]))
- f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2]))
- f.write('VARS\tjob{0}\tfix_mixing_almost="{1}"\n'.format(job_number, fix_mixing_almost))
- f.write('VARS\tjob{0}\trun_bayes_factor="{1}"\n'.format(job_number, run_bayes_factor))
- f.write('VARS\tjob{0}\tbayes_bins="{1}"\n'.format(job_number, bayes_bins))
- f.write('VARS\tjob{0}\tbayes_output="{1}"\n'.format(job_number, bayes_output))
- f.write('VARS\tjob{0}\tbayes_live_points="{1}"\n'.format(job_number, bayes_live_points))
- f.write('VARS\tjob{0}\tplot_bayes="{1}"\n'.format(job_number, plot_bayes))
- job_number += 1
-
- # for frs in full_scan_mfr:
- # print frs
- # outchains = outchain_head + '/full_scan/{0}'.format(str(sig).replace('.', '_'))
- # if run_bayes_factor == 'True':
- # bayes_output = outchains + '/bayes_factor/'
- # outchains += 'mcmc_chain'
- # f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
- # f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
- # f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
- # f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
- # f.write('VARS\tjob{0}\tsigma_ratio="{1}"\n'.format(job_number, sig))
- # f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, 'False'))
- # f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
- # f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
- # f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
- # f.write('VARS\tjob{0}\tfix_scale="{1}"\n'.format(job_number, 'False'))
- # f.write('VARS\tjob{0}\tscale="{1}"\n'.format(job_number, 0))
- # f.write('VARS\tjob{0}\tscale_region="{1}"\n'.format(job_number, scale_region))
- # f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
- # f.write('VARS\tjob{0}\tenergy="{1}"\n'.format(job_number, en))
- # f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
- # f.write('VARS\tjob{0}\tburnin="{1}"\n'.format(job_number, burnin))
- # f.write('VARS\tjob{0}\tnwalkers="{1}"\n'.format(job_number, nwalkers))
- # f.write('VARS\tjob{0}\tnsteps="{1}"\n'.format(job_number, nsteps))
- # f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
- # f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, fix_mixing))
- # f.write('VARS\tjob{0}\tno_bsm="{1}"\n'.format(job_number, no_bsm))
- # f.write('VARS\tjob{0}\trun_mcmc="{1}"\n'.format(job_number, run_mcmc))
- # f.write('VARS\tjob{0}\tastroDeltaGamma="{1}"\n'.format(job_number, astroDeltaGamma))
- # f.write('VARS\tjob{0}\tastroNorm="{1}"\n'.format(job_number, astroNorm))
- # f.write('VARS\tjob{0}\tconvNorm="{1}"\n'.format(job_number, convNorm))
- # f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm))
- # f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm))
- # f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data))
- # f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast))
- # f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles))
- # f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
- # f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
- # f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
- # f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
- # f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
- # f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance))
- # f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index))
- # f.write('VARS\tjob{0}\tbinning_0="{1}"\n'.format(job_number, binning[0]))
- # f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1]))
- # f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2]))
- # f.write('VARS\tjob{0}\tfix_mixing_almost="{1}"\n'.format(job_number, fix_mixing_almost))
- # f.write('VARS\tjob{0}\trun_bayes_factor="{1}"\n'.format(job_number, run_bayes_factor))
- # f.write('VARS\tjob{0}\tbayes_bins="{1}"\n'.format(job_number, bayes_bins))
- # f.write('VARS\tjob{0}\tbayes_output="{1}"\n'.format(job_number, bayes_output))
- # f.write('VARS\tjob{0}\tbayes_live_points="{1}"\n'.format(job_number, bayes_live_points))
- # f.write('VARS\tjob{0}\tplot_bayes="{1}"\n'.format(job_number, plot_bayes))
- # job_number += 1
+ for r in range(b_runs):
+ print 'run', r
+ f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
+ f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
+ f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
+ f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
+ f.write('VARS\tjob{0}\tsigma_ratio="{1}"\n'.format(job_number, sig))
+ f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, 'True'))
+ f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, frs[3]))
+ f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, frs[4]))
+ f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, frs[5]))
+ f.write('VARS\tjob{0}\tfix_scale="{1}"\n'.format(job_number, 'False'))
+ f.write('VARS\tjob{0}\tscale="{1}"\n'.format(job_number, 0))
+ f.write('VARS\tjob{0}\tscale_region="{1}"\n'.format(job_number, scale_region))
+ f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
+ f.write('VARS\tjob{0}\tenergy="{1}"\n'.format(job_number, en))
+ f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
+ f.write('VARS\tjob{0}\tburnin="{1}"\n'.format(job_number, burnin))
+ f.write('VARS\tjob{0}\tnwalkers="{1}"\n'.format(job_number, nwalkers))
+ f.write('VARS\tjob{0}\tnsteps="{1}"\n'.format(job_number, nsteps))
+ f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
+ f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, fix_mixing))
+ f.write('VARS\tjob{0}\tno_bsm="{1}"\n'.format(job_number, no_bsm))
+ f.write('VARS\tjob{0}\trun_mcmc="{1}"\n'.format(job_number, run_mcmc))
+ f.write('VARS\tjob{0}\tastroDeltaGamma="{1}"\n'.format(job_number, astroDeltaGamma))
+ f.write('VARS\tjob{0}\tastroNorm="{1}"\n'.format(job_number, astroNorm))
+ f.write('VARS\tjob{0}\tconvNorm="{1}"\n'.format(job_number, convNorm))
+ f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm))
+ f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm))
+ f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data))
+ f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast))
+ f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles))
+ f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
+ f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
+ f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
+ f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
+ f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
+ f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance))
+ f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index))
+ f.write('VARS\tjob{0}\tbinning_0="{1}"\n'.format(job_number, binning[0]))
+ f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1]))
+ f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2]))
+ f.write('VARS\tjob{0}\tfix_mixing_almost="{1}"\n'.format(job_number, fix_mixing_almost))
+ f.write('VARS\tjob{0}\trun_bayes_factor="{1}"\n'.format(job_number, run_bayes_factor))
+ f.write('VARS\tjob{0}\tbayes_bins="{1}"\n'.format(job_number, bayes_bins))
+ f.write('VARS\tjob{0}\tbayes_output="{1}"\n'.format(job_number, bayes_output))
+ f.write('VARS\tjob{0}\tbayes_live_points="{1}"\n'.format(job_number, bayes_live_points))
+ f.write('VARS\tjob{0}\tbayes_tolerance="{1}"\n'.format(job_number, bayes_tolerance))
+ f.write('VARS\tjob{0}\tplot_bayes="{1}"\n'.format(job_number, plot_bayes))
+ f.write('VARS\tjob{0}\tbayes_eval_bin="{1}"\n'.format(job_number, r))
+ job_number += 1
+
+ for frs in full_scan_mfr:
+ print frs
+ outchains = outchain_head + '/full_scan/{0}'.format(str(sig).replace('.', '_'))
+ if run_bayes_factor == 'True':
+ bayes_output = outchains + '/bayes_factor/'
+ outchains += 'mcmc_chain'
+ for r in range(b_runs):
+ print 'run', r
+ f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
+ f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
+ f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
+ f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
+ f.write('VARS\tjob{0}\tsigma_ratio="{1}"\n'.format(job_number, sig))
+ f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, 'False'))
+ f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
+ f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
+ f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
+ f.write('VARS\tjob{0}\tfix_scale="{1}"\n'.format(job_number, 'False'))
+ f.write('VARS\tjob{0}\tscale="{1}"\n'.format(job_number, 0))
+ f.write('VARS\tjob{0}\tscale_region="{1}"\n'.format(job_number, scale_region))
+ f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
+ f.write('VARS\tjob{0}\tenergy="{1}"\n'.format(job_number, en))
+ f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
+ f.write('VARS\tjob{0}\tburnin="{1}"\n'.format(job_number, burnin))
+ f.write('VARS\tjob{0}\tnwalkers="{1}"\n'.format(job_number, nwalkers))
+ f.write('VARS\tjob{0}\tnsteps="{1}"\n'.format(job_number, nsteps))
+ f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
+ f.write('VARS\tjob{0}\tfix_mixing="{1}"\n'.format(job_number, fix_mixing))
+ f.write('VARS\tjob{0}\tno_bsm="{1}"\n'.format(job_number, no_bsm))
+ f.write('VARS\tjob{0}\trun_mcmc="{1}"\n'.format(job_number, run_mcmc))
+ f.write('VARS\tjob{0}\tastroDeltaGamma="{1}"\n'.format(job_number, astroDeltaGamma))
+ f.write('VARS\tjob{0}\tastroNorm="{1}"\n'.format(job_number, astroNorm))
+ f.write('VARS\tjob{0}\tconvNorm="{1}"\n'.format(job_number, convNorm))
+ f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm))
+ f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm))
+ f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data))
+ f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast))
+ f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles))
+ f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
+ f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
+ f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
+ f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
+ f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
+ f.write('VARS\tjob{0}\tenergy_dependance="{1}"\n'.format(job_number, energy_dependance))
+ f.write('VARS\tjob{0}\tspectral_index="{1}"\n'.format(job_number, spectral_index))
+ f.write('VARS\tjob{0}\tbinning_0="{1}"\n'.format(job_number, binning[0]))
+ f.write('VARS\tjob{0}\tbinning_1="{1}"\n'.format(job_number, binning[1]))
+ f.write('VARS\tjob{0}\tbinning_2="{1}"\n'.format(job_number, binning[2]))
+ f.write('VARS\tjob{0}\tfix_mixing_almost="{1}"\n'.format(job_number, fix_mixing_almost))
+ f.write('VARS\tjob{0}\trun_bayes_factor="{1}"\n'.format(job_number, run_bayes_factor))
+ f.write('VARS\tjob{0}\tbayes_bins="{1}"\n'.format(job_number, bayes_bins))
+ f.write('VARS\tjob{0}\tbayes_output="{1}"\n'.format(job_number, bayes_output))
+ f.write('VARS\tjob{0}\tbayes_live_points="{1}"\n'.format(job_number, bayes_live_points))
+ f.write('VARS\tjob{0}\tbayes_tolerance="{1}"\n'.format(job_number, bayes_tolerance))
+ f.write('VARS\tjob{0}\tplot_bayes="{1}"\n'.format(job_number, plot_bayes))
+ f.write('VARS\tjob{0}\tbayes_eval_bin="{1}"\n'.format(job_number, r))
+ job_number += 1