aboutsummaryrefslogtreecommitdiffstats
path: root/submitter/make_dag.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-04-06 17:21:57 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-04-06 17:21:57 -0500
commitccffb521195eb5f41471e166e1ba8f695740bcb3 (patch)
tree28734a167b71a1d3f2a438fb09835de11aa730df /submitter/make_dag.py
parent30fddc32cfd5af1fc1f49de2e91b39c81cdf10e2 (diff)
downloadGolemFlavor-ccffb521195eb5f41471e166e1ba8f695740bcb3.tar.gz
GolemFlavor-ccffb521195eb5f41471e166e1ba8f695740bcb3.zip
add test scripts for Golem LV and NSI
Diffstat (limited to 'submitter/make_dag.py')
-rw-r--r--submitter/make_dag.py21
1 files changed, 10 insertions, 11 deletions
diff --git a/submitter/make_dag.py b/submitter/make_dag.py
index daddb65..33d05b3 100644
--- a/submitter/make_dag.py
+++ b/submitter/make_dag.py
@@ -36,6 +36,7 @@ nsteps = 100
nwalkers = 200
seed = 24
threads = 1
+mcmc_seed_type = 'uniform'
# FR
dimension = [3]
@@ -46,6 +47,9 @@ sigma_ratio = ['0.01']
scale = "1E-20 1E-30"
scale_region = "1E10"
+# Likelihood
+likelihood = 'golemfit'
+
# Nuisance
astroDeltaGamma = 2.
astroNorm = 1.
@@ -54,11 +58,8 @@ muonNorm = 1.
promptNorm = 0.
# GolemFit
-aft = 'hesespl'
-ast = 'baseline'
-axs = 'nom'
-data = 'real'
-priors = 'uniform'
+ast = 'p2_0'
+data = 'real'
# Plot
plot_angles = 'True'
@@ -110,14 +111,13 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm))
f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm))
f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data))
- f.write('VARS\tjob{0}\tpriors="{1}"\n'.format(job_number, priors))
- f.write('VARS\tjob{0}\taft="{1}"\n'.format(job_number, aft))
f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast))
- f.write('VARS\tjob{0}\taxs="{1}"\n'.format(job_number, axs))
f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles))
f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
+ f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
+ f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
job_number += 1
for frs in full_scan_mfr:
@@ -151,12 +151,11 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm))
f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm))
f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data))
- f.write('VARS\tjob{0}\tpriors="{1}"\n'.format(job_number, priors))
- f.write('VARS\tjob{0}\taft="{1}"\n'.format(job_number, aft))
f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast))
- f.write('VARS\tjob{0}\taxs="{1}"\n'.format(job_number, axs))
f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles))
f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements))
f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed))
f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads))
+ f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood))
+ f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type))
job_number += 1