diff options
| author | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-04-06 17:21:57 -0500 |
|---|---|---|
| committer | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-04-06 17:21:57 -0500 |
| commit | ccffb521195eb5f41471e166e1ba8f695740bcb3 (patch) | |
| tree | 28734a167b71a1d3f2a438fb09835de11aa730df /submitter/make_dag.py | |
| parent | 30fddc32cfd5af1fc1f49de2e91b39c81cdf10e2 (diff) | |
| download | GolemFlavor-ccffb521195eb5f41471e166e1ba8f695740bcb3.tar.gz GolemFlavor-ccffb521195eb5f41471e166e1ba8f695740bcb3.zip | |
add test scripts for Golem LV and NSI
Diffstat (limited to 'submitter/make_dag.py')
| -rw-r--r-- | submitter/make_dag.py | 21 |
1 files changed, 10 insertions, 11 deletions
diff --git a/submitter/make_dag.py b/submitter/make_dag.py index daddb65..33d05b3 100644 --- a/submitter/make_dag.py +++ b/submitter/make_dag.py @@ -36,6 +36,7 @@ nsteps = 100 nwalkers = 200 seed = 24 threads = 1 +mcmc_seed_type = 'uniform' # FR dimension = [3] @@ -46,6 +47,9 @@ sigma_ratio = ['0.01'] scale = "1E-20 1E-30" scale_region = "1E10" +# Likelihood +likelihood = 'golemfit' + # Nuisance astroDeltaGamma = 2. astroNorm = 1. @@ -54,11 +58,8 @@ muonNorm = 1. promptNorm = 0. # GolemFit -aft = 'hesespl' -ast = 'baseline' -axs = 'nom' -data = 'real' -priors = 'uniform' +ast = 'p2_0' +data = 'real' # Plot plot_angles = 'True' @@ -110,14 +111,13 @@ with open(outfile, 'w') as f: f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm)) f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm)) f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data)) - f.write('VARS\tjob{0}\tpriors="{1}"\n'.format(job_number, priors)) - f.write('VARS\tjob{0}\taft="{1}"\n'.format(job_number, aft)) f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast)) - f.write('VARS\tjob{0}\taxs="{1}"\n'.format(job_number, axs)) f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles)) f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements)) f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed)) f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads)) + f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood)) + f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type)) job_number += 1 for frs in full_scan_mfr: @@ -151,12 +151,11 @@ with open(outfile, 'w') as f: f.write('VARS\tjob{0}\tmuonNorm="{1}"\n'.format(job_number, muonNorm)) f.write('VARS\tjob{0}\tpromptNorm="{1}"\n'.format(job_number, promptNorm)) f.write('VARS\tjob{0}\tdata="{1}"\n'.format(job_number, data)) - f.write('VARS\tjob{0}\tpriors="{1}"\n'.format(job_number, priors)) - f.write('VARS\tjob{0}\taft="{1}"\n'.format(job_number, aft)) f.write('VARS\tjob{0}\tast="{1}"\n'.format(job_number, ast)) - f.write('VARS\tjob{0}\taxs="{1}"\n'.format(job_number, axs)) f.write('VARS\tjob{0}\tplot_angles="{1}"\n'.format(job_number, plot_angles)) f.write('VARS\tjob{0}\tplot_elements="{1}"\n'.format(job_number, plot_elements)) f.write('VARS\tjob{0}\tseed="{1}"\n'.format(job_number, seed)) f.write('VARS\tjob{0}\tthreads="{1}"\n'.format(job_number, threads)) + f.write('VARS\tjob{0}\tlikelihood="{1}"\n'.format(job_number, likelihood)) + f.write('VARS\tjob{0}\tmcmc_seed_type="{1}"\n'.format(job_number, mcmc_seed_type)) job_number += 1 |
