aboutsummaryrefslogtreecommitdiffstats
path: root/submitter/mcmc_dag.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-11-08 15:03:08 -0600
committershivesh <s.p.mandalia@qmul.ac.uk>2018-11-08 15:03:08 -0600
commit198ecfe008d28c2dc6c39c1f405e2ffdc96c26ac (patch)
tree6cb3ceec3d5a6714c13639e8252b159dc05a6c86 /submitter/mcmc_dag.py
parent845c55c269a59620bbf8a6c0d8adab575e1185dc (diff)
parent8a3ec14f263587af8fa87c019afd35e0b9508fbb (diff)
downloadGolemFlavor-198ecfe008d28c2dc6c39c1f405e2ffdc96c26ac.tar.gz
GolemFlavor-198ecfe008d28c2dc6c39c1f405e2ffdc96c26ac.zip
Merge branch 'master' of github.com:ShiveshM/flavour_ratio
Diffstat (limited to 'submitter/mcmc_dag.py')
-rw-r--r--submitter/mcmc_dag.py44
1 files changed, 22 insertions, 22 deletions
diff --git a/submitter/mcmc_dag.py b/submitter/mcmc_dag.py
index 5a44411..1356965 100644
--- a/submitter/mcmc_dag.py
+++ b/submitter/mcmc_dag.py
@@ -8,8 +8,8 @@ full_scan_mfr = [
]
fix_sfr_mfr = [
- (1, 1, 1, 1, 2, 0),
- (1, 1, 1, 1, 0, 0),
+ # (1, 1, 1, 1, 2, 0),
+ # (1, 1, 1, 1, 0, 0),
(1, 1, 1, 0, 1, 0),
# (1, 1, 1, 0, 0, 1),
# (1, 1, 0, 1, 2, 0),
@@ -44,7 +44,7 @@ GLOBAL_PARAMS.update(dict(
scale_region = "1E10",
energy_dependance = 'spectral',
spectral_index = -2,
- fix_mixing = 'T23',
+ fix_mixing = 'T13',
fix_mixing_almost = 'False',
fold_index = 'True'
))
@@ -100,24 +100,24 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
job_number += 1
- for frs in full_scan_mfr:
- print 'frs', frs
- outchains = outchain_head + '/full/'
- if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
- outchains += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
- outchains += 'mcmc_chain'
- f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
- f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
- f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
- f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
- f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
- f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False))
- f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
- for key in GLOBAL_PARAMS.iterkeys():
- f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
- f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
- job_number += 1
+ # for frs in full_scan_mfr:
+ # print 'frs', frs
+ # outchains = outchain_head + '/full/'
+ # if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
+ # outchains += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
+ # outchains += 'mcmc_chain'
+ # f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
+ # f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
+ # f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
+ # f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
+ # f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
+ # f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False))
+ # f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
+ # f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
+ # f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
+ # for key in GLOBAL_PARAMS.iterkeys():
+ # f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
+ # f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, outchains))
+ # job_number += 1
print 'dag file = {0}'.format(outfile)