diff options
| author | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-05-15 23:45:50 -0500 |
|---|---|---|
| committer | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-05-15 23:45:50 -0500 |
| commit | 8121c510c2115735def2e178ba0c11efe719964c (patch) | |
| tree | 32638bcc91c239f2d50edfc484a1b0c0fb604eb5 /submitter | |
| parent | e32bf7123fe6abb0e1319c02d49c1a33c4380a6e (diff) | |
| download | GolemFlavor-8121c510c2115735def2e178ba0c11efe719964c.tar.gz GolemFlavor-8121c510c2115735def2e178ba0c11efe719964c.zip | |
update
Diffstat (limited to 'submitter')
| -rw-r--r-- | submitter/mcmc_dag.py | 2 | ||||
| -rw-r--r-- | submitter/sens_dag.py | 61 |
2 files changed, 33 insertions, 30 deletions
diff --git a/submitter/mcmc_dag.py b/submitter/mcmc_dag.py index e40c043..bad73ac 100644 --- a/submitter/mcmc_dag.py +++ b/submitter/mcmc_dag.py @@ -57,7 +57,7 @@ GLOBAL_PARAMS.update(dict( # GolemFit GLOBAL_PARAMS.update(dict( ast = 'p2_0', - data = 'asimov' + data = 'real' )) # Plot diff --git a/submitter/sens_dag.py b/submitter/sens_dag.py index 5e00dfd..0652705 100644 --- a/submitter/sens_dag.py +++ b/submitter/sens_dag.py @@ -27,9 +27,9 @@ GLOBAL_PARAMS = {} sens_eval_bin = 'true' # set to 'all' to run normally GLOBAL_PARAMS.update(dict( sens_run = 'True', - run_method = 'fixed_angle', # full, fixed_angle, corr_angle + run_method = 'corr_angle', # full, fixed_angle, corr_angle stat_method = 'bayesian', - sens_bins = 20, + sens_bins = 15, seed = 'None' )) @@ -46,7 +46,7 @@ dimension = [3] GLOBAL_PARAMS.update(dict( threads = 1, binning = '6e4 1e7 20', - # binning = '1e5 1e7 5', + # binning = '1e5 1e7 20', no_bsm = 'False', scale_region = "1E10", energy_dependance = 'spectral', @@ -65,7 +65,7 @@ GLOBAL_PARAMS.update(dict( # GolemFit GLOBAL_PARAMS.update(dict( ast = 'p2_0', - data = 'asimov' + data = 'real' )) # Plot @@ -73,10 +73,12 @@ GLOBAL_PARAMS.update(dict( plot_statistic = 'True' )) -outfile = 'dagman_FR_SENS_{0}_{1}_{2}_{3}.submit'.format( +outfile = 'dagman_FR_SENS_{0}_{1}_{2}_{3}'.format( GLOBAL_PARAMS['stat_method'], GLOBAL_PARAMS['run_method'], GLOBAL_PARAMS['likelihood'], GLOBAL_PARAMS['data'] ) +# outfile += '_100TeV' +outfile += '.submit' golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit' condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/sens_submit.sub' @@ -99,6 +101,7 @@ with open(outfile, 'w') as f: output = outchain_head + '/fix_ifr/' if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian': output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_')) + # output += '100TeV/' for r in xrange(sens_runs): print 'run', r f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script)) @@ -119,29 +122,29 @@ with open(outfile, 'w') as f: f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output)) job_number += 1 - for frs in full_scan_mfr: - print 'frs', frs - output = outchain_head + '/full/' - if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian': - output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_')) - for r in xrange(sens_runs): - print 'run', r - f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script)) - f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim)) - f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0])) - f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1])) - f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2])) - f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False)) - f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0)) - f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0)) - f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0)) - if sens_eval_bin.lower() != 'all': - f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r)) - else: - f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all')) - for key in GLOBAL_PARAMS.iterkeys(): - f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key])) - f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output)) - job_number += 1 + # for frs in full_scan_mfr: + # print 'frs', frs + # output = outchain_head + '/full/' + # if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian': + # output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_')) + # for r in xrange(sens_runs): + # print 'run', r + # f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script)) + # f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim)) + # f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0])) + # f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1])) + # f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2])) + # f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False)) + # f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0)) + # f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0)) + # f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0)) + # if sens_eval_bin.lower() != 'all': + # f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r)) + # else: + # f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all')) + # for key in GLOBAL_PARAMS.iterkeys(): + # f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key])) + # f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output)) + # job_number += 1 print 'dag file = {0}'.format(outfile) |
