aboutsummaryrefslogtreecommitdiffstats
path: root/submitter
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-05-15 23:45:50 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-05-15 23:45:50 -0500
commit8121c510c2115735def2e178ba0c11efe719964c (patch)
tree32638bcc91c239f2d50edfc484a1b0c0fb604eb5 /submitter
parente32bf7123fe6abb0e1319c02d49c1a33c4380a6e (diff)
downloadGolemFlavor-8121c510c2115735def2e178ba0c11efe719964c.tar.gz
GolemFlavor-8121c510c2115735def2e178ba0c11efe719964c.zip
update
Diffstat (limited to 'submitter')
-rw-r--r--submitter/mcmc_dag.py2
-rw-r--r--submitter/sens_dag.py61
2 files changed, 33 insertions, 30 deletions
diff --git a/submitter/mcmc_dag.py b/submitter/mcmc_dag.py
index e40c043..bad73ac 100644
--- a/submitter/mcmc_dag.py
+++ b/submitter/mcmc_dag.py
@@ -57,7 +57,7 @@ GLOBAL_PARAMS.update(dict(
# GolemFit
GLOBAL_PARAMS.update(dict(
ast = 'p2_0',
- data = 'asimov'
+ data = 'real'
))
# Plot
diff --git a/submitter/sens_dag.py b/submitter/sens_dag.py
index 5e00dfd..0652705 100644
--- a/submitter/sens_dag.py
+++ b/submitter/sens_dag.py
@@ -27,9 +27,9 @@ GLOBAL_PARAMS = {}
sens_eval_bin = 'true' # set to 'all' to run normally
GLOBAL_PARAMS.update(dict(
sens_run = 'True',
- run_method = 'fixed_angle', # full, fixed_angle, corr_angle
+ run_method = 'corr_angle', # full, fixed_angle, corr_angle
stat_method = 'bayesian',
- sens_bins = 20,
+ sens_bins = 15,
seed = 'None'
))
@@ -46,7 +46,7 @@ dimension = [3]
GLOBAL_PARAMS.update(dict(
threads = 1,
binning = '6e4 1e7 20',
- # binning = '1e5 1e7 5',
+ # binning = '1e5 1e7 20',
no_bsm = 'False',
scale_region = "1E10",
energy_dependance = 'spectral',
@@ -65,7 +65,7 @@ GLOBAL_PARAMS.update(dict(
# GolemFit
GLOBAL_PARAMS.update(dict(
ast = 'p2_0',
- data = 'asimov'
+ data = 'real'
))
# Plot
@@ -73,10 +73,12 @@ GLOBAL_PARAMS.update(dict(
plot_statistic = 'True'
))
-outfile = 'dagman_FR_SENS_{0}_{1}_{2}_{3}.submit'.format(
+outfile = 'dagman_FR_SENS_{0}_{1}_{2}_{3}'.format(
GLOBAL_PARAMS['stat_method'], GLOBAL_PARAMS['run_method'],
GLOBAL_PARAMS['likelihood'], GLOBAL_PARAMS['data']
)
+# outfile += '_100TeV'
+outfile += '.submit'
golemfitsourcepath = os.environ['GOLEMSOURCEPATH'] + '/GolemFit'
condor_script = golemfitsourcepath + '/scripts/flavour_ratio/submitter/sens_submit.sub'
@@ -99,6 +101,7 @@ with open(outfile, 'w') as f:
output = outchain_head + '/fix_ifr/'
if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
+ # output += '100TeV/'
for r in xrange(sens_runs):
print 'run', r
f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
@@ -119,29 +122,29 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output))
job_number += 1
- for frs in full_scan_mfr:
- print 'frs', frs
- output = outchain_head + '/full/'
- if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
- output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
- for r in xrange(sens_runs):
- print 'run', r
- f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
- f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
- f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
- f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
- f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
- f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False))
- f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
- if sens_eval_bin.lower() != 'all':
- f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
- else:
- f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all'))
- for key in GLOBAL_PARAMS.iterkeys():
- f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
- f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output))
- job_number += 1
+ # for frs in full_scan_mfr:
+ # print 'frs', frs
+ # output = outchain_head + '/full/'
+ # if GLOBAL_PARAMS['likelihood'].lower() == 'gaussian':
+ # output += '{0}/'.format(str(GLOBAL_PARAMS['sigma_ratio']).replace('.', '_'))
+ # for r in xrange(sens_runs):
+ # print 'run', r
+ # f.write('JOB\tjob{0}\t{1}\n'.format(job_number, condor_script))
+ # f.write('VARS\tjob{0}\tdimension="{1}"\n'.format(job_number, dim))
+ # f.write('VARS\tjob{0}\tmr0="{1}"\n'.format(job_number, frs[0]))
+ # f.write('VARS\tjob{0}\tmr1="{1}"\n'.format(job_number, frs[1]))
+ # f.write('VARS\tjob{0}\tmr2="{1}"\n'.format(job_number, frs[2]))
+ # f.write('VARS\tjob{0}\tfix_source_ratio="{1}"\n'.format(job_number, False))
+ # f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
+ # f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
+ # f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
+ # if sens_eval_bin.lower() != 'all':
+ # f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
+ # else:
+ # f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all'))
+ # for key in GLOBAL_PARAMS.iterkeys():
+ # f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
+ # f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output))
+ # job_number += 1
print 'dag file = {0}'.format(outfile)