aboutsummaryrefslogtreecommitdiffstats
path: root/submitter
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-04-28 20:45:22 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-04-28 20:45:22 -0500
commitbcc0cc720a6e28eeb5b48c2d4ad16924751e75ff (patch)
treedddbff6944c801192b531dad7184366f5995b515 /submitter
parentc37932036698600c7b44d2ff15aac6784d201098 (diff)
downloadGolemFlavor-bcc0cc720a6e28eeb5b48c2d4ad16924751e75ff.tar.gz
GolemFlavor-bcc0cc720a6e28eeb5b48c2d4ad16924751e75ff.zip
Sat Apr 28 20:45:22 CDT 2018
Diffstat (limited to 'submitter')
-rw-r--r--submitter/mcmc_dag.py12
-rw-r--r--submitter/sens_dag.py22
2 files changed, 20 insertions, 14 deletions
diff --git a/submitter/mcmc_dag.py b/submitter/mcmc_dag.py
index 2866887..827ab9e 100644
--- a/submitter/mcmc_dag.py
+++ b/submitter/mcmc_dag.py
@@ -9,9 +9,9 @@ full_scan_mfr = [
fix_sfr_mfr = [
(1, 1, 1, 1, 2, 0),
- # (1, 1, 1, 1, 0, 0),
- # (1, 1, 1, 0, 1, 0),
- # (1, 1, 1, 0, 0, 1),
+ (1, 1, 1, 1, 0, 0),
+ (1, 1, 1, 0, 1, 0),
+ (1, 1, 1, 0, 0, 1),
# (1, 1, 0, 1, 2, 0),
# (1, 1, 0, 1, 0, 0),
# (1, 1, 0, 0, 1, 0),
@@ -48,7 +48,7 @@ GLOBAL_PARAMS.update(dict(
# Likelihood
GLOBAL_PARAMS.update(dict(
- likelihood = 'gaussian',
+ likelihood = 'golemfit',
sigma_ratio = '0.01'
))
@@ -72,8 +72,8 @@ with open(outfile, 'w') as f:
job_number = 1
for dim in dimension:
print 'dimension', dim
- outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/SI_{2}'.format(
- GLOBAL_PARAMS['likelihood'], dim, GLOBAL_PARAMS['spectral_index']
+ outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/'.format(
+ GLOBAL_PARAMS['likelihood'], dim
)
for frs in fix_sfr_mfr:
print 'frs', frs
diff --git a/submitter/sens_dag.py b/submitter/sens_dag.py
index 63aaaba..17b063d 100644
--- a/submitter/sens_dag.py
+++ b/submitter/sens_dag.py
@@ -9,8 +9,8 @@ full_scan_mfr = [
fix_sfr_mfr = [
(1, 1, 1, 1, 2, 0),
- # (1, 1, 1, 1, 0, 0),
- # (1, 1, 1, 0, 1, 0),
+ (1, 1, 1, 1, 0, 0),
+ (1, 1, 1, 0, 1, 0),
# (1, 1, 1, 0, 0, 1),
# (1, 1, 0, 1, 2, 0),
# (1, 1, 0, 1, 0, 0),
@@ -27,7 +27,7 @@ GLOBAL_PARAMS = {}
sens_eval_bin = 'all' # set to 'all' to run normally
GLOBAL_PARAMS.update(dict(
sens_run = 'True',
- run_method = 'corr_angle',
+ run_method = 'fixed_angle', # full, fixed_angle, corr_angle
stat_method = 'frequentist',
sens_bins = 10,
seed = 'None'
@@ -55,7 +55,7 @@ GLOBAL_PARAMS.update(dict(
# Likelihood
GLOBAL_PARAMS.update(dict(
- likelihood = 'gaussian',
+ likelihood = 'golemfit',
sigma_ratio = '0.01'
))
@@ -87,8 +87,8 @@ with open(outfile, 'w') as f:
job_number = 1
for dim in dimension:
print 'dimension', dim
- outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}/SI_{2}'.format(
- GLOBAL_PARAMS['likelihood'], dim, GLOBAL_PARAMS['spectral_index']
+ outchain_head = '/data/user/smandalia/flavour_ratio/data/{0}/DIM{1}'.format(
+ GLOBAL_PARAMS['likelihood'], dim
)
for frs in fix_sfr_mfr:
print 'frs', frs
@@ -107,7 +107,10 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, frs[3]))
f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, frs[4]))
f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, frs[5]))
- f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
+ if sens_eval_bin.lower() != 'all':
+ f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
+ else:
+ f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all'))
for key in GLOBAL_PARAMS.iterkeys():
f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output))
@@ -130,7 +133,10 @@ with open(outfile, 'w') as f:
f.write('VARS\tjob{0}\tsr0="{1}"\n'.format(job_number, 0))
f.write('VARS\tjob{0}\tsr1="{1}"\n'.format(job_number, 0))
f.write('VARS\tjob{0}\tsr2="{1}"\n'.format(job_number, 0))
- f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
+ if sens_eval_bin.lower() != 'all':
+ f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, r))
+ else:
+ f.write('VARS\tjob{0}\tsens_eval_bin="{1}"\n'.format(job_number, 'all'))
for key in GLOBAL_PARAMS.iterkeys():
f.write('VARS\tjob{0}\t{1}="{2}"\n'.format(job_number, key, GLOBAL_PARAMS[key]))
f.write('VARS\tjob{0}\toutfile="{1}"\n'.format(job_number, output))