aboutsummaryrefslogtreecommitdiffstats
path: root/utils/fr.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-04-24 11:22:19 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-04-24 11:22:19 -0500
commitcfe60732b09544e304e66129383ceaf92ac8cdff (patch)
treecccf10230c86f293e540a3b158df52acd332114d /utils/fr.py
parent2ca0c5597590e2043bd280dd8aee3d9d09bae29a (diff)
downloadGolemFlavor-cfe60732b09544e304e66129383ceaf92ac8cdff.tar.gz
GolemFlavor-cfe60732b09544e304e66129383ceaf92ac8cdff.zip
Tue Apr 24 11:22:19 CDT 2018
Diffstat (limited to 'utils/fr.py')
-rw-r--r--utils/fr.py17
1 files changed, 9 insertions, 8 deletions
diff --git a/utils/fr.py b/utils/fr.py
index 6a405a7..342a848 100644
--- a/utils/fr.py
+++ b/utils/fr.py
@@ -198,17 +198,18 @@ def normalise_fr(fr):
return np.array(fr) / float(np.sum(fr))
-def estimate_scale(args, mass_eigenvalues=MASS_EIGENVALUES):
+def estimate_scale(args):
"""Estimate the scale at which new physics will enter."""
+ m_eign = args.m3x_2
if args.energy_dependance is EnergyDependance.MONO:
scale = np.power(
- 10, np.round(np.log10(MASS_EIGENVALUES[1]/args.energy)) - \
+ 10, np.round(np.log10(m_eign/args.energy)) - \
np.log10(args.energy**(args.dimension-3))
)
elif args.energy_dependance is EnergyDependance.SPECTRAL:
scale = np.power(
10, np.round(
- np.log10(MASS_EIGENVALUES[1]/np.power(10, np.average(np.log10(args.binning)))) \
+ np.log10(m_eign/np.power(10, np.average(np.log10(args.binning)))) \
- np.log10(np.power(10, np.average(np.log10(args.binning)))**(args.dimension-3))
)
)
@@ -297,7 +298,7 @@ NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935))
def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES,
- nufit_u=NUFIT_U, no_bsm=False, fix_mixing=False,
+ sm_u=NUFIT_U, no_bsm=False, fix_mixing=False,
fix_mixing_almost=False, fix_scale=False, scale=None,
check_uni=True, epsilon=1e-9):
"""Construct the BSM mixing matrix from the BSM parameters.
@@ -316,8 +317,8 @@ def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES,
mass_eigenvalues : list, length = 2
SM mass eigenvalues
- nufit_u : numpy ndarray, dimension 3
- SM NuFIT mixing matrix
+ sm_u : numpy ndarray, dimension 3
+ SM mixing matrix
no_bsm : bool
Turn off BSM behaviour
@@ -350,7 +351,7 @@ def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES,
[-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]])
"""
- if np.shape(nufit_u) != (3, 3):
+ if np.shape(sm_u) != (3, 3):
raise ValueError(
'Input matrix should be a square and dimension 3, '
'got\n{0}'.format(ham)
@@ -377,7 +378,7 @@ def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES,
mass_matrix = np.array(
[[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]]
)
- sm_ham = (1./(2*energy))*np.dot(nufit_u, np.dot(mass_matrix, nufit_u.conj().T))
+ sm_ham = (1./(2*energy))*np.dot(sm_u, np.dot(mass_matrix, sm_u.conj().T))
if no_bsm:
eg_vector = cardano_eqn(sm_ham)
else: