diff options
| author | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-04-24 11:22:19 -0500 |
|---|---|---|
| committer | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-04-24 11:22:19 -0500 |
| commit | cfe60732b09544e304e66129383ceaf92ac8cdff (patch) | |
| tree | cccf10230c86f293e540a3b158df52acd332114d /utils/fr.py | |
| parent | 2ca0c5597590e2043bd280dd8aee3d9d09bae29a (diff) | |
| download | GolemFlavor-cfe60732b09544e304e66129383ceaf92ac8cdff.tar.gz GolemFlavor-cfe60732b09544e304e66129383ceaf92ac8cdff.zip | |
Tue Apr 24 11:22:19 CDT 2018
Diffstat (limited to 'utils/fr.py')
| -rw-r--r-- | utils/fr.py | 17 |
1 files changed, 9 insertions, 8 deletions
diff --git a/utils/fr.py b/utils/fr.py index 6a405a7..342a848 100644 --- a/utils/fr.py +++ b/utils/fr.py @@ -198,17 +198,18 @@ def normalise_fr(fr): return np.array(fr) / float(np.sum(fr)) -def estimate_scale(args, mass_eigenvalues=MASS_EIGENVALUES): +def estimate_scale(args): """Estimate the scale at which new physics will enter.""" + m_eign = args.m3x_2 if args.energy_dependance is EnergyDependance.MONO: scale = np.power( - 10, np.round(np.log10(MASS_EIGENVALUES[1]/args.energy)) - \ + 10, np.round(np.log10(m_eign/args.energy)) - \ np.log10(args.energy**(args.dimension-3)) ) elif args.energy_dependance is EnergyDependance.SPECTRAL: scale = np.power( 10, np.round( - np.log10(MASS_EIGENVALUES[1]/np.power(10, np.average(np.log10(args.binning)))) \ + np.log10(m_eign/np.power(10, np.average(np.log10(args.binning)))) \ - np.log10(np.power(10, np.average(np.log10(args.binning)))**(args.dimension-3)) ) ) @@ -297,7 +298,7 @@ NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935)) def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES, - nufit_u=NUFIT_U, no_bsm=False, fix_mixing=False, + sm_u=NUFIT_U, no_bsm=False, fix_mixing=False, fix_mixing_almost=False, fix_scale=False, scale=None, check_uni=True, epsilon=1e-9): """Construct the BSM mixing matrix from the BSM parameters. @@ -316,8 +317,8 @@ def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES, mass_eigenvalues : list, length = 2 SM mass eigenvalues - nufit_u : numpy ndarray, dimension 3 - SM NuFIT mixing matrix + sm_u : numpy ndarray, dimension 3 + SM mixing matrix no_bsm : bool Turn off BSM behaviour @@ -350,7 +351,7 @@ def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES, [-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]]) """ - if np.shape(nufit_u) != (3, 3): + if np.shape(sm_u) != (3, 3): raise ValueError( 'Input matrix should be a square and dimension 3, ' 'got\n{0}'.format(ham) @@ -377,7 +378,7 @@ def params_to_BSMu(theta, dim, energy, mass_eigenvalues=MASS_EIGENVALUES, mass_matrix = np.array( [[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]] ) - sm_ham = (1./(2*energy))*np.dot(nufit_u, np.dot(mass_matrix, nufit_u.conj().T)) + sm_ham = (1./(2*energy))*np.dot(sm_u, np.dot(mass_matrix, sm_u.conj().T)) if no_bsm: eg_vector = cardano_eqn(sm_ham) else: |
