aboutsummaryrefslogtreecommitdiffstats
path: root/utils/gf.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-05-14 16:45:57 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-05-14 16:45:57 -0500
commite32bf7123fe6abb0e1319c02d49c1a33c4380a6e (patch)
tree2908ee005191d2cc591b14128383d90402ec270b /utils/gf.py
parentc2c427177af69b0a08874a4466c95f2f6aa94c44 (diff)
downloadGolemFlavor-e32bf7123fe6abb0e1319c02d49c1a33c4380a6e.tar.gz
GolemFlavor-e32bf7123fe6abb0e1319c02d49c1a33c4380a6e.zip
fix bug in energy spectrum
Diffstat (limited to 'utils/gf.py')
-rw-r--r--utils/gf.py14
1 files changed, 6 insertions, 8 deletions
diff --git a/utils/gf.py b/utils/gf.py
index 7ded152..cc093e1 100644
--- a/utils/gf.py
+++ b/utils/gf.py
@@ -55,7 +55,6 @@ def fit_flags(llh_paramset):
def steering_params(args):
steering_categ = args.ast
- # params = gf.SteeringParams(gf.sampleTag.HESE)
params = gf.SteeringParams(gf.sampleTag.MagicTau)
params.quiet = False
params.fastmode = True
@@ -66,14 +65,13 @@ def steering_params(args):
# For Tianlu
# params.years = [999]
- params.minFitEnergy = 1.0e5 # GeV
+ # params.minFitEnergy = 1.0e5 # GeV
return params
def set_up_as(fitter, params):
print 'Injecting the model', params
- # asimov_params = gf.FitParameters(gf.sampleTag.HESE)
asimov_params = gf.FitParameters(gf.sampleTag.MagicTau)
for parm in params:
asimov_params.__setattr__(parm.name, float(parm.value))
@@ -85,13 +83,14 @@ def setup_fitter(args, asimov_paramset):
sparams = steering_params(args)
npp = gf.NewPhysicsParams()
fitter = gf.GolemFit(datapaths, sparams, npp)
- # comment to use data
- # set_up_as(fitter, asimov_paramset)
+ if args.data is DataType.ASIMOV:
+ set_up_as(fitter, asimov_paramset)
+ elif args.data is DataType.REAL:
+ print 'Using MagicTau DATA'
return fitter
def get_llh(fitter, params):
- # fitparams = gf.FitParameters(gf.sampleTag.HESE)
fitparams = gf.FitParameters(gf.sampleTag.MagicTau)
for parm in params:
fitparams.__setattr__(parm.name, float(parm.value))
@@ -101,7 +100,6 @@ def get_llh(fitter, params):
def get_llh_freq(fitter, params):
print 'setting to {0}'.format(params)
- # fitparams = gf.FitParameters(gf.sampleTag.HESE)
fitparams = gf.FitParameters(gf.sampleTag.MagicTau)
for parm in params:
fitparams.__setattr__(parm.name, float(parm.value))
@@ -118,7 +116,7 @@ def data_distributions(fitter):
def gf_argparse(parser):
parser.add_argument(
- '--data', default='real', type=partial(enum_parse, c=DataType),
+ '--data', default='asimov', type=partial(enum_parse, c=DataType),
choices=DataType, help='select datatype'
)
parser.add_argument(