aboutsummaryrefslogtreecommitdiffstats
path: root/utils/likelihood.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2018-04-11 13:56:39 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2018-04-11 13:56:39 -0500
commitbc28b9e2a31666839e837e6f0e49161713527085 (patch)
treeeef2f71d6fcc4b4bd60b71b744b33c2d94622293 /utils/likelihood.py
parent326ff3bacfe0c2925afde031aa6287ebe0af0b33 (diff)
downloadGolemFlavor-bc28b9e2a31666839e837e6f0e49161713527085.tar.gz
GolemFlavor-bc28b9e2a31666839e837e6f0e49161713527085.zip
GOLEMFIT takes in Haar measure params, fix. Add Bayes Factor calculation
Diffstat (limited to 'utils/likelihood.py')
-rw-r--r--utils/likelihood.py10
1 files changed, 6 insertions, 4 deletions
diff --git a/utils/likelihood.py b/utils/likelihood.py
index fe4301d..c1208ab 100644
--- a/utils/likelihood.py
+++ b/utils/likelihood.py
@@ -101,7 +101,7 @@ def triangle_llh(theta, args, asimov_paramset, mcmc_paramset, fitter):
elif args.energy_dependance is EnergyDependance.SPECTRAL:
mf_perbin = []
for i_sf, sf_perbin in enumerate(source_flux):
- u = fr_utils.params_to_BSMu(
+ u = fr_utils.params_to_BSMu(
theta = bsm_angles,
dim = args.dimension,
energy = args.energy,
@@ -119,10 +119,9 @@ def triangle_llh(theta, args, asimov_paramset, mcmc_paramset, fitter):
intergrated_measured_flux
fr = averaged_measured_flux / np.sum(averaged_measured_flux)
+ flavour_angles = fr_utils.fr_to_angles(fr)
for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)):
- param.value = fr[idx]
-
- # print 'hypo_paramset', hypo_paramset
+ param.value = flavour_angles[idx]
if args.likelihood is Likelihood.FLAT:
return 1.
@@ -131,6 +130,9 @@ def triangle_llh(theta, args, asimov_paramset, mcmc_paramset, fitter):
return gaussian_llh(fr, fr_bf, args.sigma_ratio)
elif args.likelihood is Likelihood.GOLEMFIT:
return gf_utils.get_llh(fitter, hypo_paramset)
+ elif args.likelihood is Likelihood.GF_FREQ:
+ return gf_utils.get_llh_freq(fitter, hypo_paramset)
+
def ln_prob(theta, args, fitter, asimov_paramset, mcmc_paramset):
lp = lnprior(theta, paramset=mcmc_paramset)