diff options
| author | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-11-26 20:43:08 -0600 |
|---|---|---|
| committer | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-11-26 20:43:08 -0600 |
| commit | 5bcc51c59700968f8dad4359a133ab6a64f85f01 (patch) | |
| tree | 9e5b4dad26ffef5ff9478cd0eb9f1036dc512f18 /utils/mn.py | |
| parent | 4d9b6c29734e4dcc854dd13f77a537c78b1c42a0 (diff) | |
| download | GolemFlavor-5bcc51c59700968f8dad4359a133ab6a64f85f01.tar.gz GolemFlavor-5bcc51c59700968f8dad4359a133ab6a64f85f01.zip | |
begin contour.py and rename some util files
Diffstat (limited to 'utils/mn.py')
| -rw-r--r-- | utils/mn.py | 109 |
1 files changed, 109 insertions, 0 deletions
diff --git a/utils/mn.py b/utils/mn.py new file mode 100644 index 0000000..48ccc26 --- /dev/null +++ b/utils/mn.py @@ -0,0 +1,109 @@ +# author : S. Mandalia +# s.p.mandalia@qmul.ac.uk +# +# date : April 19, 2018 + +""" +Useful functions to use MultiNest for the BSM flavour ratio analysis +""" + +from __future__ import absolute_import, division + +from functools import partial + +import numpy as np + +from pymultinest import analyse, run + +from utils import llh as llh_utils +from utils.misc import gen_identifier, make_dir, solve_ratio + + +def CubePrior(cube, ndim, n_params): + pass + + +def lnProb(cube, ndim, n_params, mn_paramset, llh_paramset, asimov_paramset, + args, fitter): + if ndim != len(mn_paramset): + raise AssertionError( + 'Length of MultiNest scan paramset is not the same as the input ' + 'params\ncube={0}\nmn_paramset]{1}'.format(cube, mn_paramset) + ) + pranges = mn_paramset.seeds + for i in xrange(ndim): + mn_paramset[i].value = (pranges[i][1]-pranges[i][0])*cube[i] + pranges[i][0] + for pm in mn_paramset.names: + llh_paramset[pm].value = mn_paramset[pm].value + theta = llh_paramset.values + # print 'llh_paramset', llh_paramset + llh = llh_utils.ln_prob( + theta=theta, + args=args, + asimov_paramset=asimov_paramset, + llh_paramset=llh_paramset, + fitter=fitter + ) + # print 'llh', llh + return llh + + +def mn_argparse(parser): + parser.add_argument( + '--mn-live-points', type=int, default=3000, + help='Number of live points for MultiNest evaluations' + ) + parser.add_argument( + '--mn-tolerance', type=float, default=0.01, + help='Tolerance for MultiNest' + ) + parser.add_argument( + '--mn-output', type=str, default='./mnrun/', + help='Folder to store MultiNest evaluations' + ) + + +def mn_evidence(mn_paramset, llh_paramset, asimov_paramset, args, fitter, + identifier='mn'): + """Run the MultiNest algorithm to calculate the evidence.""" + n_params = len(mn_paramset) + + for n in mn_paramset.names: + llh_paramset[n].value = mn_paramset[n].value + + lnProbEval = partial( + lnProb, + mn_paramset = mn_paramset, + llh_paramset = llh_paramset, + asimov_paramset = asimov_paramset, + args = args, + fitter = fitter + ) + + # prefix = './mnrun/DIM{0}/{1}_{2}_{3:>010}_'.format( + # args.dimension, args.likelihood, gen_identifier(args), np.random.randint(0, 2**30) + # ) + llh = '{0}'.format(args.likelihood).split('.')[1] + data = '{0}'.format(args.data).split('.')[1] + sr1, sr2, sr3 = solve_ratio(args.source_ratio) + prefix = './mnrun/DIM{0}/{1}/{2}/s{3}{4}{5}/{6}'.format( + args.dimension, data, llh, sr1, sr2, sr3, identifier + ) + make_dir(prefix) + print 'Running evidence calculation for {0}'.format(prefix) + run( + LogLikelihood = lnProbEval, + Prior = CubePrior, + n_dims = n_params, + n_live_points = args.mn_live_points, + evidence_tolerance = args.mn_tolerance, + outputfiles_basename = prefix, + importance_nested_sampling = True, + resume = False, + verbose = True + ) + + analyser = analyse.Analyzer( + outputfiles_basename=prefix, n_params=n_params + ) + return analyser.get_stats()['global evidence'] |
