aboutsummaryrefslogtreecommitdiffstats
path: root/utils/mn.py
diff options
context:
space:
mode:
authorshivesh <s.p.mandalia@qmul.ac.uk>2019-04-17 09:28:31 -0500
committershivesh <s.p.mandalia@qmul.ac.uk>2019-04-17 09:28:31 -0500
commit8b9bed6c80bde554028c4a7c07d2078177bcffb9 (patch)
tree05d6f9d1f4bfed8758054497dee14b0e74471f02 /utils/mn.py
parentd84021c3f136d657e708a31b816f6d6409a9c241 (diff)
downloadGolemFlavor-8b9bed6c80bde554028c4a7c07d2078177bcffb9.tar.gz
GolemFlavor-8b9bed6c80bde554028c4a7c07d2078177bcffb9.zip
Wed 17 Apr 09:28:30 CDT 2019
Diffstat (limited to 'utils/mn.py')
-rw-r--r--utils/mn.py34
1 files changed, 20 insertions, 14 deletions
diff --git a/utils/mn.py b/utils/mn.py
index 335df96..ac42858 100644
--- a/utils/mn.py
+++ b/utils/mn.py
@@ -16,7 +16,7 @@ import numpy as np
from pymultinest import analyse, run
from utils import llh as llh_utils
-from utils.misc import gen_identifier, make_dir, solve_ratio
+from utils.misc import gen_identifier, make_dir, parse_bool, solve_ratio
def CubePrior(cube, ndim, n_params):
@@ -58,6 +58,10 @@ def mn_argparse(parser):
'--mn-output', type=str, default='./mnrun/',
help='Folder to store MultiNest evaluations'
)
+ parser.add_argument(
+ '--run-mn', type=parse_bool, default='True',
+ help='Run MultiNest'
+ )
def mn_evidence(mn_paramset, llh_paramset, asimov_paramset, args, prefix='mn'):
@@ -75,19 +79,21 @@ def mn_evidence(mn_paramset, llh_paramset, asimov_paramset, args, prefix='mn'):
args = args,
)
- make_dir(prefix)
- print 'Running evidence calculation for {0}'.format(prefix)
- run(
- LogLikelihood = lnProbEval,
- Prior = CubePrior,
- n_dims = n_params,
- n_live_points = args.mn_live_points,
- evidence_tolerance = args.mn_tolerance,
- outputfiles_basename = prefix,
- importance_nested_sampling = True,
- resume = False,
- verbose = True
- )
+ if args.run_mn:
+ make_dir(prefix)
+ print 'Running evidence calculation for {0}'.format(prefix)
+ run(
+ LogLikelihood = lnProbEval,
+ Prior = CubePrior,
+ n_dims = n_params,
+ n_live_points = args.mn_live_points,
+ evidence_tolerance = args.mn_tolerance,
+ outputfiles_basename = prefix,
+ importance_nested_sampling = True,
+ # resume = False,
+ resume = True,
+ verbose = True
+ )
analyser = analyse.Analyzer(
outputfiles_basename=prefix, n_params=n_params