diff options
| author | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-11-26 20:43:08 -0600 |
|---|---|---|
| committer | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-11-26 20:43:08 -0600 |
| commit | 5bcc51c59700968f8dad4359a133ab6a64f85f01 (patch) | |
| tree | 9e5b4dad26ffef5ff9478cd0eb9f1036dc512f18 /utils/multinest.py | |
| parent | 4d9b6c29734e4dcc854dd13f77a537c78b1c42a0 (diff) | |
| download | GolemFlavor-5bcc51c59700968f8dad4359a133ab6a64f85f01.tar.gz GolemFlavor-5bcc51c59700968f8dad4359a133ab6a64f85f01.zip | |
begin contour.py and rename some util files
Diffstat (limited to 'utils/multinest.py')
| -rw-r--r-- | utils/multinest.py | 109 |
1 files changed, 0 insertions, 109 deletions
diff --git a/utils/multinest.py b/utils/multinest.py deleted file mode 100644 index fdd87cd..0000000 --- a/utils/multinest.py +++ /dev/null @@ -1,109 +0,0 @@ -# author : S. Mandalia -# s.p.mandalia@qmul.ac.uk -# -# date : April 19, 2018 - -""" -Useful functions to use MultiNest for the BSM flavour ratio analysis -""" - -from __future__ import absolute_import, division - -from functools import partial - -import numpy as np - -from pymultinest import analyse, run - -from utils import likelihood -from utils.misc import gen_identifier, make_dir, solve_ratio - - -def CubePrior(cube, ndim, n_params): - pass - - -def lnProb(cube, ndim, n_params, mn_paramset, llh_paramset, asimov_paramset, - args, fitter): - if ndim != len(mn_paramset): - raise AssertionError( - 'Length of MultiNest scan paramset is not the same as the input ' - 'params\ncube={0}\nmn_paramset]{1}'.format(cube, mn_paramset) - ) - pranges = mn_paramset.seeds - for i in xrange(ndim): - mn_paramset[i].value = (pranges[i][1]-pranges[i][0])*cube[i] + pranges[i][0] - for pm in mn_paramset.names: - llh_paramset[pm].value = mn_paramset[pm].value - theta = llh_paramset.values - # print 'llh_paramset', llh_paramset - llh = likelihood.ln_prob( - theta=theta, - args=args, - asimov_paramset=asimov_paramset, - llh_paramset=llh_paramset, - fitter=fitter - ) - # print 'llh', llh - return llh - - -def mn_argparse(parser): - parser.add_argument( - '--mn-live-points', type=int, default=3000, - help='Number of live points for MultiNest evaluations' - ) - parser.add_argument( - '--mn-tolerance', type=float, default=0.01, - help='Tolerance for MultiNest' - ) - parser.add_argument( - '--mn-output', type=str, default='./mnrun/', - help='Folder to store MultiNest evaluations' - ) - - -def mn_evidence(mn_paramset, llh_paramset, asimov_paramset, args, fitter, - identifier='mn'): - """Run the MultiNest algorithm to calculate the evidence.""" - n_params = len(mn_paramset) - - for n in mn_paramset.names: - llh_paramset[n].value = mn_paramset[n].value - - lnProbEval = partial( - lnProb, - mn_paramset = mn_paramset, - llh_paramset = llh_paramset, - asimov_paramset = asimov_paramset, - args = args, - fitter = fitter - ) - - # prefix = './mnrun/DIM{0}/{1}_{2}_{3:>010}_'.format( - # args.dimension, args.likelihood, gen_identifier(args), np.random.randint(0, 2**30) - # ) - llh = '{0}'.format(args.likelihood).split('.')[1] - data = '{0}'.format(args.data).split('.')[1] - sr1, sr2, sr3 = solve_ratio(args.source_ratio) - prefix = './mnrun/DIM{0}/{1}/{2}/s{3}{4}{5}/{6}'.format( - args.dimension, data, llh, sr1, sr2, sr3, identifier - ) - make_dir(prefix) - print 'Running evidence calculation for {0}'.format(prefix) - run( - LogLikelihood = lnProbEval, - Prior = CubePrior, - n_dims = n_params, - n_live_points = args.mn_live_points, - evidence_tolerance = args.mn_tolerance, - outputfiles_basename = prefix, - importance_nested_sampling = True, - resume = False, - verbose = True - ) - - analyser = analyse.Analyzer( - outputfiles_basename=prefix, n_params=n_params - ) - return analyser.get_stats()['global evidence'] |
