aboutsummaryrefslogtreecommitdiffstats
path: root/utils
diff options
context:
space:
mode:
authorShivesh Mandalia <shivesh.mandalia@outlook.com>2020-02-28 18:39:45 +0000
committerShivesh Mandalia <shivesh.mandalia@outlook.com>2020-02-28 18:39:45 +0000
commit402f8b53dd892b8fd44ae5ad45eac91b5f6b3750 (patch)
treeb619c6efb0eb303e164bbd27691cdd9f8fce36a2 /utils
parent3a5a6c658e45402d413970e8d273a656ed74dcf5 (diff)
downloadGolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.tar.gz
GolemFlavor-402f8b53dd892b8fd44ae5ad45eac91b5f6b3750.zip
reogranise into a python package
Diffstat (limited to 'utils')
-rw-r--r--utils/__init__.py0
-rw-r--r--utils/enums.py63
-rw-r--r--utils/fr.py531
-rw-r--r--utils/gf.py156
-rw-r--r--utils/llh.py111
-rw-r--r--utils/mcmc.py120
-rw-r--r--utils/misc.py226
-rw-r--r--utils/mn.py106
-rw-r--r--utils/param.py213
-rw-r--r--utils/plot.py1030
10 files changed, 0 insertions, 2556 deletions
diff --git a/utils/__init__.py b/utils/__init__.py
deleted file mode 100644
index e69de29..0000000
--- a/utils/__init__.py
+++ /dev/null
diff --git a/utils/enums.py b/utils/enums.py
deleted file mode 100644
index e85158d..0000000
--- a/utils/enums.py
+++ /dev/null
@@ -1,63 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : March 17, 2018
-
-"""
-Define Enums for the BSM flavour ratio analysis
-"""
-
-from enum import Enum
-
-
-def str_enum(x):
- return '{0}'.format(str(x).split('.')[-1])
-
-
-class DataType(Enum):
- REAL = 1
- ASIMOV = 2
- REALISATION = 3
-
-
-class Likelihood(Enum):
- GOLEMFIT = 1
- GF_FREQ = 2
-
-
-class ParamTag(Enum):
- NUISANCE = 1
- SM_ANGLES = 2
- MMANGLES = 3
- SCALE = 4
- SRCANGLES = 5
- BESTFIT = 6
- NONE = 7
-
-
-class PriorsCateg(Enum):
- UNIFORM = 1
- GAUSSIAN = 2
- LIMITEDGAUSS = 3
-
-
-class MCMCSeedType(Enum):
- UNIFORM = 1
- GAUSSIAN = 2
-
-
-class StatCateg(Enum):
- BAYESIAN = 1
- FREQUENTIST = 2
-
-
-class SteeringCateg(Enum):
- P2_0 = 1
- P2_1 = 2
-
-
-class Texture(Enum):
- OEU = 1
- OET = 2
- OUT = 3
- NONE = 4
diff --git a/utils/fr.py b/utils/fr.py
deleted file mode 100644
index bf0fb56..0000000
--- a/utils/fr.py
+++ /dev/null
@@ -1,531 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : March 17, 2018
-
-"""
-Useful functions for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-from functools import partial
-
-import numpy as np
-
-from utils.enums import ParamTag, Texture
-from utils.misc import enum_parse, parse_bool
-
-import mpmath as mp
-mp.mp.dps = 100 # Computation precision
-
-# DTYPE = np.float128
-# CDTYPE = np.complex256
-# PI = np.arccos(DTYPE(-1))
-# SQRT = np.sqrt
-# COS = np.cos
-# SIN = np.sin
-# ACOS = np.arccos
-# ASIN = np.arcsin
-# EXP = np.exp
-
-DTYPE = mp.mpf
-CDTYPE = mp.mpc
-PI = mp.pi
-SQRT = mp.sqrt
-COS = mp.cos
-SIN = mp.sin
-ACOS = mp.acos
-ASIN = mp.asin
-EXP = mp.exp
-
-MASS_EIGENVALUES = [7.40E-23, 2.515E-21]
-"""SM mass eigenvalues."""
-
-SCALE_BOUNDARIES = {
- 3 : (-32, -20),
- 4 : (-40, -24),
- 5 : (-48, -27),
- 6 : (-56, -30),
- 7 : (-64, -33),
- 8 : (-72, -36)
-}
-"""Boundaries to scan the NP scale for each dimension."""
-
-
-def determinant(x):
- """Calculate the determininant of a 3x3 matrix.
-
- Parameters
- ----------
- x : ndarray, shape = (3, 3)
-
- Returns
- ----------
- float determinant
-
- Examples
- ----------
- >>> print determinant(
- >>> [[-1.65238188-0.59549718j, 0.27486548-0.18437467j, -1.35524534-0.38542072j],
- >>> [-1.07480906+0.29630449j, -0.47808456-0.80316821j, -0.88609356-1.50737308j],
- >>> [-0.14924144-0.99230446j, 0.49504234+0.63639805j, 2.29258915-0.36537507j]]
- >>> )
- (2.7797571563274688+3.0841795325804848j)
-
- """
- return (x[0][0] * (x[1][1] * x[2][2] - x[2][1] * x[1][2])
- -x[1][0] * (x[0][1] * x[2][2] - x[2][1] * x[0][2])
- +x[2][0] * (x[0][1] * x[1][2] - x[1][1] * x[0][2]))
-
-
-def angles_to_fr(src_angles):
- """Convert angular projection of the source flavour ratio back into the
- flavour ratio.
-
- Parameters
- ----------
- src_angles : list, length = 2
- sin(phi)^4 and cos(psi)^2
-
- Returns
- ----------
- flavour ratios (nue, numu, nutau)
-
- Examples
- ----------
- >>> print angles_to_fr((0.3, 0.4))
- (0.38340579025361626, 0.16431676725154978, 0.45227744249483393)
-
- """
- sphi4, c2psi = map(DTYPE, src_angles)
-
- psi = (0.5)*ACOS(c2psi)
-
- sphi2 = SQRT(sphi4)
- cphi2 = 1. - sphi2
- spsi2 = SIN(psi)**2
- cspi2 = 1. - spsi2
-
- x = float(abs(sphi2*cspi2))
- y = float(abs(sphi2*spsi2))
- z = float(abs(cphi2))
- return x, y, z
-
-
-def angles_to_u(bsm_angles):
- """Convert angular projection of the mixing matrix elements back into the
- mixing matrix elements.
-
- Parameters
- ----------
- bsm_angles : list, length = 4
- sin(12)^2, cos(13)^4, sin(23)^2 and deltacp
-
- Returns
- ----------
- unitary numpy ndarray of shape (3, 3)
-
- Examples
- ----------
- >>> from fr import angles_to_u
- >>> print angles_to_u((0.2, 0.3, 0.5, 1.5))
- array([[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ],
- [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ],
- [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]])
-
- """
- s12_2, c13_4, s23_2, dcp = map(DTYPE, bsm_angles)
- dcp = CDTYPE(dcp)
-
- c12_2 = 1. - s12_2
- c13_2 = SQRT(c13_4)
- s13_2 = 1. - c13_2
- c23_2 = 1. - s23_2
-
- t12 = ASIN(SQRT(s12_2))
- t13 = ACOS(SQRT(c13_2))
- t23 = ASIN(SQRT(s23_2))
-
- c12 = COS(t12)
- s12 = SIN(t12)
- c13 = COS(t13)
- s13 = SIN(t13)
- c23 = COS(t23)
- s23 = SIN(t23)
-
- p1 = np.array([[1 , 0 , 0] , [0 , c23 , s23] , [0 , -s23 , c23]] , dtype=CDTYPE)
- p2 = np.array([[c13 , 0 , s13*EXP(-1j*dcp)] , [0 , 1 , 0] , [-s13*EXP(1j*dcp) , 0 , c13]] , dtype=CDTYPE)
- p3 = np.array([[c12 , s12 , 0] , [-s12 , c12 , 0] , [0 , 0 , 1]] , dtype=CDTYPE)
-
- u = np.dot(np.dot(p1, p2), p3)
- return u
-
-
-def cardano_eqn(ham):
- """Diagonalise the effective Hamiltonian 3x3 matrix into the form
- h_{eff} = UE_{eff}U^{dagger} using the procedure in PRD91, 052003 (2015).
-
- Parameters
- ----------
- ham : numpy ndarray of shape (3, 3)
- sin(12)^2, cos(13)^4, sin(23)^2 and deltacp
-
- Returns
- ----------
- unitary numpy ndarray of shape (3, 3)
-
- Examples
- ----------
- >>> import numpy as np
- >>> from fr import cardano_eqn
- >>> ham = np.array(
- >>> [[ 0.66195018+0.j , 0.33097509+0.j , 0.04757188-0.6708311j ],
- >>> [-0.34631487-0.42427084j, 0.61741198-0.21213542j, 0.52331757+0.j ],
- >>> [ 0.28614067-0.42427084j, -0.64749908-0.21213542j, 0.52331757+0.j ]]
- >>> )
- >>> print cardano_eqn(ham)
- array([[-0.11143379-0.58863683j, -0.09067747-0.48219068j, 0.34276625-0.08686465j],
- [ 0.14835519+0.47511473j, -0.18299305+0.40777481j, 0.31906300+0.82514223j],
- [-0.62298966+0.07231745j, -0.61407815-0.42709603j, 0.03660313+0.30160428j]])
-
- """
- if np.shape(ham) != (3, 3):
- raise ValueError(
- 'Input matrix should be a square and dimension 3, '
- 'got\n{0}'.format(ham)
- )
-
- a = -np.trace(ham)
- b = DTYPE(1)/2 * ((np.trace(ham))**DTYPE(2) - np.trace(np.dot(ham, ham)))
- c = -determinant(ham)
-
- Q = (DTYPE(1)/9) * (a**DTYPE(2) - DTYPE(3)*b)
- R = (DTYPE(1)/54) * (DTYPE(2)*a**DTYPE(3) - DTYPE(9)*a*b + DTYPE(27)*c)
- theta = ACOS(R / SQRT(Q**DTYPE(3)))
-
- E1 = -DTYPE(2) * SQRT(Q) * COS(theta/DTYPE(3)) - (DTYPE(1)/3)*a
- E2 = -DTYPE(2) * SQRT(Q) * COS((theta - DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a
- E3 = -DTYPE(2) * SQRT(Q) * COS((theta + DTYPE(2)*PI)/DTYPE(3)) - (DTYPE(1)/3)*a
-
- A1 = ham[1][2] * (ham[0][0] - E1) - ham[1][0]*ham[0][2]
- A2 = ham[1][2] * (ham[0][0] - E2) - ham[1][0]*ham[0][2]
- A3 = ham[1][2] * (ham[0][0] - E3) - ham[1][0]*ham[0][2]
-
- B1 = ham[2][0] * (ham[1][1] - E1) - ham[2][1]*ham[1][0]
- B2 = ham[2][0] * (ham[1][1] - E2) - ham[2][1]*ham[1][0]
- B3 = ham[2][0] * (ham[1][1] - E3) - ham[2][1]*ham[1][0]
-
- C1 = ham[1][0] * (ham[2][2] - E1) - ham[1][2]*ham[2][0]
- C2 = ham[1][0] * (ham[2][2] - E2) - ham[1][2]*ham[2][0]
- C3 = ham[1][0] * (ham[2][2] - E3) - ham[1][2]*ham[2][0]
-
- N1 = SQRT(np.abs(A1*B1)**2 + np.abs(A1*C1)**2 + np.abs(B1*C1)**2)
- N2 = SQRT(np.abs(A2*B2)**2 + np.abs(A2*C2)**2 + np.abs(B2*C2)**2)
- N3 = SQRT(np.abs(A3*B3)**2 + np.abs(A3*C3)**2 + np.abs(B3*C3)**2)
-
- mm = np.array([
- [np.conjugate(B1)*C1 / N1, np.conjugate(B2)*C2 / N2, np.conjugate(B3)*C3 / N3],
- [A1*C1 / N1, A2*C2 / N2, A3*C3 / N3],
- [A1*B1 / N1, A2*B2 / N2, A3*B3 / N3]
- ])
- return mm
-
-
-def normalise_fr(fr):
- """Normalise an input flavour combination to a flavour ratio.
-
- Parameters
- ----------
- fr : list, length = 3
- flavour combination
-
- Returns
- ----------
- numpy ndarray flavour ratio
-
- Examples
- ----------
- >>> from fr import normalise_fr
- >>> print normalise_fr((1, 2, 3))
- array([ 0.16666667, 0.33333333, 0.5 ])
-
- """
- return np.array(fr) / float(np.sum(fr))
-
-
-def fr_argparse(parser):
- parser.add_argument(
- '--injected-ratio', type=float, nargs=3, required=False,
- help='Injected ratio if not using data'
- )
- parser.add_argument(
- '--source-ratio', type=float, nargs=3, default=[1, 2, 0],
- help='Set the source flavour ratio for the case when you want to fix it'
- )
- parser.add_argument(
- '--no-bsm', type=parse_bool, default='False',
- help='Turn off BSM terms'
- )
- parser.add_argument(
- '--dimension', type=int, default=3,
- help='Set the new physics dimension to consider'
- )
- parser.add_argument(
- '--texture', type=partial(enum_parse, c=Texture),
- default='none', choices=Texture, help='Set the BSM mixing texture'
- )
- parser.add_argument(
- '--binning', default=[6e4, 1e7, 20], type=float, nargs=3,
- help='Binning for spectral energy dependance'
- )
-
-
-def fr_to_angles(ratios):
- """Convert from flavour ratio into the angular projection of the flavour
- ratios.
-
- Parameters
- ----------
- TODO(shivesh)
- """
- fr0, fr1, fr2 = normalise_fr(ratios)
-
- cphi2 = fr2
- sphi2 = (1.0 - cphi2)
-
- if sphi2 == 0.:
- return (0., 0.)
- else:
- cpsi2 = fr0 / sphi2
-
- sphi4 = sphi2**2
- c2psi = COS(ACOS(SQRT(cpsi2))*2)
-
- return map(float, (sphi4, c2psi))
-
-
-NUFIT_U = angles_to_u((0.307, (1-0.02195)**2, 0.565, 3.97935))
-"""NuFIT mixing matrix (s_12^2, c_13^4, s_23^2, dcp)"""
-
-
-def params_to_BSMu(bsm_angles, dim, energy, mass_eigenvalues=MASS_EIGENVALUES,
- sm_u=NUFIT_U, no_bsm=False, texture=Texture.NONE,
- check_uni=True, epsilon=1e-7):
- """Construct the BSM mixing matrix from the BSM parameters.
-
- Parameters
- ----------
- bsm_angles : list, length > 3
- BSM parameters
-
- dim : int
- Dimension of BSM physics
-
- energy : float
- Energy in GeV
-
- mass_eigenvalues : list, length = 2
- SM mass eigenvalues
-
- sm_u : numpy ndarray, dimension 3
- SM mixing matrix
-
- no_bsm : bool
- Turn off BSM behaviour
-
- texture : Texture
- BSM mixing texture
-
- check_uni : bool
- Check the resulting BSM mixing matrix is unitary
-
- Returns
- ----------
- unitary numpy ndarray of shape (3, 3)
-
- Examples
- ----------
- >>> from fr import params_to_BSMu
- >>> print params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), dim=3, energy=1000)
- array([[ 0.18658169 -6.34190523e-01j, -0.26460391 +2.01884200e-01j, 0.67247096 -9.86808417e-07j],
- [-0.50419832 +2.14420570e-01j, -0.36013768 +5.44254868e-01j, 0.03700961 +5.22039894e-01j],
- [-0.32561308 -3.95946524e-01j, 0.64294909 -2.23453580e-01j, 0.03700830 +5.22032403e-01j]])
-
- """
- if np.shape(sm_u) != (3, 3):
- raise ValueError(
- 'Input matrix should be a square and dimension 3, '
- 'got\n{0}'.format(sm_u)
- )
-
- if not isinstance(bsm_angles, (list, tuple)):
- bsm_angles = [bsm_angles]
-
- z = 0.+1e-9
- if texture is Texture.OEU:
- np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = 0.5, 1.0, z, z, bsm_angles
- elif texture is Texture.OET:
- np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = z, 0.25, z, z, bsm_angles
- elif texture is Texture.OUT:
- np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = z, 1.0, 0.5, z, bsm_angles
- else:
- np_s12_2, np_c13_4, np_s23_2, np_dcp, sc2 = bsm_angles
-
- sc2 = np.power(10., sc2)
- sc1 = sc2 / 100.
-
- mass_matrix = np.array(
- [[0, 0, 0], [0, mass_eigenvalues[0], 0], [0, 0, mass_eigenvalues[1]]]
- )
- sm_ham = (1./(2*energy))*np.dot(sm_u, np.dot(mass_matrix, sm_u.conj().T))
- if no_bsm:
- eg_vector = cardano_eqn(sm_ham)
- else:
- NP_U = angles_to_u((np_s12_2, np_c13_4, np_s23_2, np_dcp))
- SC_U = np.array(
- [[0, 0, 0], [0, sc1, 0], [0, 0, sc2]]
- )
- bsm_term = (energy**(dim-3)) * np.dot(NP_U, np.dot(SC_U, NP_U.conj().T))
- bsm_ham = sm_ham + bsm_term
- eg_vector = cardano_eqn(bsm_ham)
-
- if check_uni:
- test_unitarity(eg_vector, rse=True, epsilon=epsilon)
- return eg_vector
-
-
-def flux_averaged_BSMu(theta, args, spectral_index, llh_paramset):
- if len(theta) != len(llh_paramset):
- raise AssertionError(
- 'Length of MCMC scan is not the same as the input '
- 'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
- )
-
- for idx, param in enumerate(llh_paramset):
- param.value = theta[idx]
-
- bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:])
- bin_width = np.abs(np.diff(args.binning))
-
- source_flux = np.array(
- [fr * np.power(bin_centers, spectral_index)
- for fr in args.source_ratio]
- ).T
-
- bsm_angles = llh_paramset.from_tag(
- [ParamTag.SCALE, ParamTag.MMANGLES], values=True
- )
-
- m_eig_names = ['m21_2', 'm3x_2']
- ma_names = ['s_12_2', 'c_13_4', 's_23_2', 'dcp']
-
- if set(m_eig_names+ma_names).issubset(set(llh_paramset.names)):
- mass_eigenvalues = [x.value for x in llh_paramset if x.name in m_eig_names]
- sm_u = angles_to_u(
- [x.value for x in llh_paramset if x.name in ma_names]
- )
- else:
- mass_eigenvalues = MASS_EIGENVALUES
- sm_u = NUFIT_U
-
- if args.no_bsm:
- fr = u_to_fr(source_flux, np.array(sm_u, dtype=np.complex256))
- else:
- mf_perbin = []
- for i_sf, sf_perbin in enumerate(source_flux):
- u = params_to_BSMu(
- bsm_angles = bsm_angles,
- dim = args.dimension,
- energy = bin_centers[i_sf],
- mass_eigenvalues = mass_eigenvalues,
- sm_u = sm_u,
- no_bsm = args.no_bsm,
- texture = args.texture,
- )
- fr = u_to_fr(sf_perbin, u)
- mf_perbin.append(fr)
- measured_flux = np.array(mf_perbin).T
- intergrated_measured_flux = np.sum(measured_flux * bin_width, axis=1)
- averaged_measured_flux = (1./(args.binning[-1] - args.binning[0])) * \
- intergrated_measured_flux
- fr = averaged_measured_flux / np.sum(averaged_measured_flux)
- return fr
-
-
-def test_unitarity(x, prnt=False, rse=False, epsilon=None):
- """Test the unitarity of a matrix.
-
- Parameters
- ----------
- x : numpy ndarray
- Matrix to evaluate
-
- prnt : bool
- Print the result
-
- rse : bool
- Raise Assertion if matrix is not unitary
-
- Returns
- ----------
- numpy ndarray
-
- Examples
- ----------
- >>> from fr import test_unitarity
- >>> x = np.identity(3)
- >>> print test_unitarity(x)
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
-
- """
- f = np.abs(np.dot(x, x.conj().T), dtype=DTYPE)
- if prnt:
- print 'Unitarity test:\n{0}'.format(f)
- if rse:
- if not np.abs(np.trace(f) - 3.) < epsilon or \
- not np.abs(np.sum(f) - 3.) < epsilon:
- raise AssertionError(
- 'Matrix is not unitary!\nx\n{0}\ntest '
- 'u\n{1}'.format(x, f)
- )
- return f
-
-
-def u_to_fr(source_fr, matrix):
- """Compute the observed flavour ratio assuming decoherence.
-
- Parameters
- ----------
- source_fr : list, length = 3
- Source flavour ratio components
-
- matrix : numpy ndarray, dimension 3
- Mixing matrix
-
- Returns
- ----------
- Measured flavour ratio
-
- Examples
- ----------
- >>> from fr import params_to_BSMu, u_to_fr
- >>> print u_to_fr((1, 2, 0), params_to_BSMu((0.2, 0.3, 0.5, 1.5, -20), 3, 1000))
- array([ 0.33740075, 0.33176584, 0.33083341])
-
- """
- try:
- composition = np.einsum(
- 'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr,
- )
- except:
- matrix = np.array(matrix, dtype=np.complex256)
- composition = np.einsum(
- 'ai, bi, a -> b', np.abs(matrix)**2, np.abs(matrix)**2, source_fr,
- )
- pass
-
- ratio = composition / np.sum(source_fr)
- return ratio
diff --git a/utils/gf.py b/utils/gf.py
deleted file mode 100644
index de21cc5..0000000
--- a/utils/gf.py
+++ /dev/null
@@ -1,156 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : March 17, 2018
-
-"""
-Useful GolemFit wrappers for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-from functools import partial
-
-import numpy as np
-
-try:
- import GolemFitPy as gf
-except:
- print 'Running without GolemFit'
- pass
-
-from utils.enums import DataType, Likelihood, SteeringCateg
-from utils.misc import enum_parse, parse_bool, thread_factors
-from utils.param import ParamSet
-
-
-FITTER = None
-
-
-def fit_flags(llh_paramset):
- default_flags = {
- # False means it's not fixed in minimization
- 'astroFlavorAngle1' : True,
- 'astroFlavorAngle2' : True,
- 'convNorm' : True,
- 'promptNorm' : True,
- 'muonNorm' : True,
- 'astroNorm' : True,
- 'astroParticleBalance' : True,
- # 'astroDeltaGamma' : True,
- 'cutoffEnergy' : True,
- 'CRDeltaGamma' : True,
- 'piKRatio' : True,
- 'NeutrinoAntineutrinoRatio' : True,
- 'darkNorm' : True,
- 'domEfficiency' : True,
- 'holeiceForward' : True,
- 'anisotropyScale' : True,
- 'astroNormSec' : True,
- 'astroDeltaGammaSec' : True
- }
- flags = gf.FitParametersFlag()
- gf_nuisance = []
- for param in llh_paramset:
- if param.name in default_flags:
- print 'Setting param {0:<15} to float in the ' \
- 'minimisation'.format(param.name)
- flags.__setattr__(param.name, False)
- gf_nuisance.append(param)
- return flags, ParamSet(gf_nuisance)
-
-
-def steering_params(args):
- steering_categ = args.ast
- params = gf.SteeringParams(gf.sampleTag.MagicTau)
- params.quiet = False
- if args.debug:
- params.fastmode = False
- else:
- params.fastmode = True
- params.simToLoad= steering_categ.name.lower()
- params.evalThreads = args.threads
-
- if hasattr(args, 'binning'):
- params.minFitEnergy = args.binning[0] # GeV
- params.maxFitEnergy = args.binning[-1] # GeV
- else:
- params.minFitEnergy = 6E4 # GeV
- params.maxFitEnergy = 1E7 # GeV
- params.load_data_from_text_file = False
- params.do_HESE_reshuffle=False
- params.use_legacy_selfveto_calculation = False
-
- return params
-
-
-def setup_asimov(params):
- print 'Injecting the model', params
- asimov_params = gf.FitParameters(gf.sampleTag.MagicTau)
- for parm in params:
- asimov_params.__setattr__(parm.name, float(parm.value))
- FITTER.SetupAsimov(asimov_params)
-
-
-def setup_realisation(params, seed):
- print 'Injecting the model', params
- asimov_params = gf.FitParameters(gf.sampleTag.MagicTau)
- for parm in params:
- asimov_params.__setattr__(parm.name, float(parm.value))
- FITTER.Swallow(FITTER.SpitRealization(asimov_params, seed))
-
-
-def setup_fitter(args, asimov_paramset):
- global FITTER
- datapaths = gf.DataPaths()
- sparams = steering_params(args)
- npp = gf.NewPhysicsParams()
- FITTER = gf.GolemFit(datapaths, sparams, npp)
- if args.data is DataType.ASIMOV:
- setup_asimov(FITTER, asimov_paramset)
- elif args.data is DataType.REALISATION:
- seed = args.seed if args.seed is not None else 1
- setup_realisation(FITTER, asimov_paramset, seed)
- elif args.data is DataType.REAL:
- print 'Using MagicTau DATA'
-
-
-def get_llh(params):
- fitparams = gf.FitParameters(gf.sampleTag.MagicTau)
- for parm in params:
- fitparams.__setattr__(parm.name, float(parm.value))
- llh = -FITTER.EvalLLH(fitparams)
- return llh
-
-
-def get_llh_freq(params):
- print 'setting to {0}'.format(params)
- fitparams = gf.FitParameters(gf.sampleTag.MagicTau)
- for parm in params:
- fitparams.__setattr__(parm.name, float(parm.value))
- FITTER.SetFitParametersSeed(fitparams)
- llh = -FITTER.MinLLH().likelihood
- return llh
-
-
-def data_distributions():
- hdat = FITTER.GetDataDistribution()
- binedges = np.asarray(
- [FITTER.GetZenithBinsData(), FITTER.GetEnergyBinsData()]
- )
- return hdat, binedges
-
-
-def gf_argparse(parser):
- parser.add_argument(
- '--debug', default='False', type=parse_bool, help='Run without fastmode'
- )
- parser.add_argument(
- '--data', default='asimov', type=partial(enum_parse, c=DataType),
- choices=DataType, help='select datatype'
- )
- parser.add_argument(
- '--ast', default='p2_0', type=partial(enum_parse, c=SteeringCateg),
- choices=SteeringCateg,
- help='use asimov/fake dataset with specific steering'
- )
diff --git a/utils/llh.py b/utils/llh.py
deleted file mode 100644
index 5a0eea7..0000000
--- a/utils/llh.py
+++ /dev/null
@@ -1,111 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : April 04, 2018
-
-"""
-Likelihood functions for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-from copy import deepcopy
-from functools import partial
-
-import numpy as np
-import scipy
-from scipy.stats import multivariate_normal, truncnorm
-
-from utils import fr as fr_utils
-from utils import gf as gf_utils
-from utils.enums import Likelihood, ParamTag, PriorsCateg, StatCateg
-from utils.misc import enum_parse, gen_identifier, parse_bool
-
-
-def GaussianBoundedRV(loc=0., sigma=1., lower=-np.inf, upper=np.inf):
- """Normalised gaussian bounded between lower and upper values"""
- low, up = (lower - loc) / sigma, (upper - loc) / sigma
- g = scipy.stats.truncnorm(loc=loc, scale=sigma, a=low, b=up)
- return g
-
-
-def multi_gaussian(fr, fr_bf, sigma, offset=-320):
- """Multivariate gaussian likelihood."""
- cov_fr = np.identity(3) * sigma
- return np.log(multivariate_normal.pdf(fr, mean=fr_bf, cov=cov_fr)) + offset
-
-
-def llh_argparse(parser):
- parser.add_argument(
- '--stat-method', default='bayesian',
- type=partial(enum_parse, c=StatCateg), choices=StatCateg,
- help='Statistical method to employ'
- )
-
-
-def lnprior(theta, paramset):
- """Priors on theta."""
- if len(theta) != len(paramset):
- raise AssertionError(
- 'Length of MCMC scan is not the same as the input '
- 'params\ntheta={0}\nparamset={1}'.format(theta, paramset)
- )
- for idx, param in enumerate(paramset):
- param.value = theta[idx]
- ranges = paramset.ranges
- for value, range in zip(theta, ranges):
- if range[0] <= value <= range[1]:
- pass
- else: return -np.inf
-
- prior = 0
- for param in paramset:
- if param.prior is PriorsCateg.GAUSSIAN:
- prior += GaussianBoundedRV(
- loc=param.nominal_value, sigma=param.std
- ).logpdf(param.value)
- elif param.prior is PriorsCateg.LIMITEDGAUSS:
- prior += GaussianBoundedRV(
- loc=param.nominal_value, sigma=param.std,
- lower=param.ranges[0], upper=param.ranges[1]
- ).logpdf(param.value)
- return prior
-
-
-def triangle_llh(theta, args, asimov_paramset, llh_paramset):
- """Log likelihood function for a given theta."""
- if len(theta) != len(llh_paramset):
- raise AssertionError(
- 'Length of MCMC scan is not the same as the input '
- 'params\ntheta={0}\nparamset]{1}'.format(theta, llh_paramset)
- )
- hypo_paramset = asimov_paramset
- for param in llh_paramset.from_tag(ParamTag.NUISANCE):
- hypo_paramset[param.name].value = param.value
-
- spectral_index = -hypo_paramset['astroDeltaGamma'].value
- # Assigning llh_paramset values from theta happens in this function.
- fr = fr_utils.flux_averaged_BSMu(theta, args, spectral_index, llh_paramset)
-
- flavour_angles = fr_utils.fr_to_angles(fr)
- # print 'flavour_angles', map(float, flavour_angles)
- for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)):
- param.value = flavour_angles[idx]
-
- if args.likelihood is Likelihood.GOLEMFIT:
- llh = gf_utils.get_llh(hypo_paramset)
- elif args.likelihood is Likelihood.GF_FREQ:
- llh = gf_utils.get_llh_freq(hypo_paramset)
- return llh
-
-
-def ln_prob(theta, args, asimov_paramset, llh_paramset):
- dc_asimov_paramset = deepcopy(asimov_paramset)
- dc_llh_paramset = deepcopy(llh_paramset)
- lp = lnprior(theta, paramset=dc_llh_paramset)
- if not np.isfinite(lp):
- return -np.inf
- return lp + triangle_llh(
- theta, args=args, asimov_paramset=dc_asimov_paramset,
- llh_paramset=dc_llh_paramset
- )
diff --git a/utils/mcmc.py b/utils/mcmc.py
deleted file mode 100644
index 49e5022..0000000
--- a/utils/mcmc.py
+++ /dev/null
@@ -1,120 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : March 17, 2018
-
-"""
-Useful functions to use an MCMC for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-from functools import partial
-
-import emcee
-import tqdm
-
-import numpy as np
-
-from utils.enums import MCMCSeedType
-from utils.misc import enum_parse, make_dir, parse_bool
-
-
-def mcmc(p0, ln_prob, ndim, nwalkers, burnin, nsteps, args, threads=1):
- """Run the MCMC."""
- sampler = emcee.EnsembleSampler(
- nwalkers, ndim, ln_prob, threads=threads
- )
-
- print "Running burn-in"
- for result in tqdm.tqdm(sampler.sample(p0, iterations=burnin), total=burnin):
- pos, prob, state = result
- sampler.reset()
- print "Finished burn-in"
- args.burnin = False
-
- print "Running"
- for _ in tqdm.tqdm(sampler.sample(pos, iterations=nsteps), total=nsteps):
- pass
- print "Finished"
-
- samples = sampler.chain.reshape((-1, ndim))
- print 'acceptance fraction', sampler.acceptance_fraction
- print 'sum of acceptance fraction', np.sum(sampler.acceptance_fraction)
- print 'np.unique(samples[:,0]).shape', np.unique(samples[:,0]).shape
- try:
- print 'autocorrelation', sampler.acor
- except:
- print 'WARNING : NEED TO RUN MORE SAMPLES'
-
- return samples
-
-
-def mcmc_argparse(parser):
- parser.add_argument(
- '--run-mcmc', type=parse_bool, default='True',
- help='Run the MCMC'
- )
- parser.add_argument(
- '--burnin', type=int, default=100,
- help='Amount to burnin'
- )
- parser.add_argument(
- '--nwalkers', type=int, default=60,
- help='Number of walkers'
- )
- parser.add_argument(
- '--nsteps', type=int, default=2000,
- help='Number of steps to run'
- )
- parser.add_argument(
- '--mcmc-seed-type', default='uniform',
- type=partial(enum_parse, c=MCMCSeedType), choices=MCMCSeedType,
- help='Type of distrbution to make the initial MCMC seed'
- )
- parser.add_argument(
- '--plot-angles', type=parse_bool, default='False',
- help='Plot MCMC triangle in the angles space'
- )
- parser.add_argument(
- '--plot-elements', type=parse_bool, default='False',
- help='Plot MCMC triangle in the mixing elements space'
- )
-
-
-def flat_seed(paramset, nwalkers):
- """Get gaussian seed values for the MCMC."""
- ndim = len(paramset)
- low = np.array(paramset.seeds).T[0]
- high = np.array(paramset.seeds).T[1]
- p0 = np.random.uniform(
- low=low, high=high, size=[nwalkers, ndim]
- )
- return p0
-
-
-def gaussian_seed(paramset, nwalkers):
- """Get gaussian seed values for the MCMC."""
- ndim = len(paramset)
- p0 = np.random.normal(
- paramset.values, paramset.stds, size=[nwalkers, ndim]
- )
- return p0
-
-
-def save_chains(chains, outfile):
- """Save the chains.
-
- Parameters
- ----------
- chains : numpy ndarray
- MCMC chains to save
-
- outfile : str
- Output file location of chains
-
- """
- make_dir(outfile)
- print 'Saving chains to location {0}'.format(outfile+'.npy')
- np.save(outfile+'.npy', chains)
-
diff --git a/utils/misc.py b/utils/misc.py
deleted file mode 100644
index 630aaf6..0000000
--- a/utils/misc.py
+++ /dev/null
@@ -1,226 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : March 17, 2018
-
-"""
-Misc functions for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-import os
-import errno
-import multiprocessing
-from fractions import gcd
-
-import argparse
-from operator import attrgetter
-
-import numpy as np
-
-from utils.enums import str_enum
-from utils.enums import DataType, Likelihood, Texture
-
-
-class SortingHelpFormatter(argparse.HelpFormatter):
- """Sort argparse help options alphabetically."""
- def add_arguments(self, actions):
- actions = sorted(actions, key=attrgetter('option_strings'))
- super(SortingHelpFormatter, self).add_arguments(actions)
-
-
-def solve_ratio(fr):
- denominator = reduce(gcd, fr)
- f = [int(x/denominator) for x in fr]
- allow = (1, 2, 0)
- if f[0] not in allow or f[1] not in allow or f[2] not in allow:
- return '{0:.2f}_{1:.2f}_{2:.2f}'.format(fr[0], fr[1], fr[2])
- else:
- return '{0}_{1}_{2}'.format(f[0], f[1], f[2])
-
-
-def gen_identifier(args):
- f = '_DIM{0}'.format(args.dimension)
- f += '_sfr_' + solve_ratio(args.source_ratio)
- if args.data in [DataType.ASIMOV, DataType.REALISATION]:
- f += '_mfr_' + solve_ratio(args.injected_ratio)
- if args.texture is not Texture.NONE:
- f += '_{0}'.format(str_enum(args.texture))
- return f
-
-
-def gen_outfile_name(args):
- """Generate a name for the output file based on the input args.
-
- Parameters
- ----------
- args : argparse
- argparse object to print
-
- """
- return args.outfile + gen_identifier(args)
-
-
-def parse_bool(s):
- """Parse a string to a boolean.
-
- Parameters
- ----------
- s : str
- String to parse
-
- Returns
- ----------
- bool
-
- Examples
- ----------
- >>> from misc import parse_bool
- >>> print parse_bool('true')
- True
-
- """
- if s.lower() == 'true':
- return True
- elif s.lower() == 'false':
- return False
- else:
- raise ValueError
-
-
-def parse_enum(e):
- return '{0}'.format(e).split('.')[1].lower()
-
-
-def print_args(args):
- """Print the input arguments.
-
- Parameters
- ----------
- args : argparse
- argparse object to print
-
- """
- arg_vars = vars(args)
- for key in sorted(arg_vars):
- print '== {0:<25} = {1}'.format(key, arg_vars[key])
-
-
-def enum_parse(s, c):
- return c[s.upper()]
-
-
-def make_dir(outfile):
- try:
- os.makedirs(outfile[:-len(os.path.basename(outfile))])
- except OSError as exc: # Python >2.5
- if exc.errno == errno.EEXIST and os.path.isdir(outfile[:-len(os.path.basename(outfile))]):
- pass
- else:
- raise
-
-
-def remove_option(parser, arg):
- for action in parser._actions:
- if (vars(action)['option_strings']
- and vars(action)['option_strings'][0] == arg) \
- or vars(action)['dest'] == arg:
- parser._remove_action(action)
-
- for action in parser._action_groups:
- vars_action = vars(action)
- var_group_actions = vars_action['_group_actions']
- for x in var_group_actions:
- if x.dest == arg:
- var_group_actions.remove(x)
- return
-
-
-def seed_parse(s):
- if s.lower() == 'none':
- return None
- else:
- return int(s)
-
-
-def thread_type(t):
- if t.lower() == 'max':
- return multiprocessing.cpu_count()
- else:
- return int(t)
-
-
-def thread_factors(t):
- for x in reversed(range(int(np.ceil(np.sqrt(t)))+1)):
- if t%x == 0:
- return (x, int(t/x))
-
-
-def centers(x):
- return (x[:-1]+x[1:])*0.5
-
-
-def get_units(dimension):
- if dimension == 3: return r' / \:{\rm GeV}'
- if dimension == 4: return r''
- if dimension == 5: return r' / \:{\rm GeV}^{-1}'
- if dimension == 6: return r' / \:{\rm GeV}^{-2}'
- if dimension == 7: return r' / \:{\rm GeV}^{-3}'
- if dimension == 8: return r' / \:{\rm GeV}^{-4}'
-
-
-def calc_nbins(x):
- n = (np.max(x) - np.min(x)) / (2 * len(x)**(-1./3) * (np.percentile(x, 75) - np.percentile(x, 25)))
- return np.floor(n)
-
-
-def calc_bins(x):
- nbins = calc_nbins(x)
- return np.linspace(np.min(x), np.max(x)+2, num=nbins+1)
-
-
-def most_likely(arr):
- """Return the densest region given a 1D array of data."""
- binning = calc_bins(arr)
- harr = np.histogram(arr, binning)[0]
- return centers(binning)[np.argmax(harr)]
-
-
-def interval(arr, percentile=68.):
- """Returns the *percentile* shortest interval around the mode."""
- center = most_likely(arr)
- sarr = sorted(arr)
- delta = np.abs(sarr - center)
- curr_low = np.argmin(delta)
- curr_up = curr_low
- npoints = len(sarr)
- while curr_up - curr_low < percentile/100.*npoints:
- if curr_low == 0:
- curr_up += 1
- elif curr_up == npoints-1:
- curr_low -= 1
- elif sarr[curr_up]-sarr[curr_low-1] < sarr[curr_up+1]-sarr[curr_low]:
- curr_low -= 1
- elif sarr[curr_up]-sarr[curr_low-1] > sarr[curr_up+1]-sarr[curr_low]:
- curr_up += 1
- elif (curr_up - curr_low) % 2:
- # they are equal so step half of the time up and down
- curr_low -= 1
- else:
- curr_up += 1
- return sarr[curr_low], center, sarr[curr_up]
-
-
-def flat_angles_to_u(x):
- """Convert from angles to mixing elements."""
- return abs(angles_to_u(x)).astype(np.float32).flatten().tolist()
-
-
-def myround(x, base=2, up=False, down=False):
- if up == down and up is True: assert 0
- if up: return int(base * np.round(float(x)/base-0.5))
- elif down: return int(base * np.round(float(x)/base+0.5))
- else: int(base * np.round(float(x)/base))
-
-
diff --git a/utils/mn.py b/utils/mn.py
deleted file mode 100644
index e3a4a09..0000000
--- a/utils/mn.py
+++ /dev/null
@@ -1,106 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : April 19, 2018
-
-"""
-Useful functions to use MultiNest for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-from functools import partial
-
-import numpy as np
-
-from pymultinest import analyse, run
-
-from utils import llh as llh_utils
-from utils.misc import gen_identifier, make_dir, parse_bool, solve_ratio
-
-
-def CubePrior(cube, ndim, n_params):
- pass
-
-
-def lnProb(cube, ndim, n_params, mn_paramset, llh_paramset, asimov_paramset,
- args):
- if ndim != len(mn_paramset):
- raise AssertionError(
- 'Length of MultiNest scan paramset is not the same as the input '
- 'params\ncube={0}\nmn_paramset]{1}'.format(cube, mn_paramset)
- )
- pranges = mn_paramset.ranges
- for i in xrange(ndim):
- mn_paramset[i].value = (pranges[i][1]-pranges[i][0])*cube[i] + pranges[i][0]
- for pm in mn_paramset.names:
- llh_paramset[pm].value = mn_paramset[pm].value
- theta = llh_paramset.values
- llh = llh_utils.ln_prob(
- theta=theta,
- args=args,
- asimov_paramset=asimov_paramset,
- llh_paramset=llh_paramset,
- )
- return llh
-
-
-def mn_argparse(parser):
- parser.add_argument(
- '--mn-live-points', type=int, default=3000,
- help='Number of live points for MultiNest evaluations'
- )
- parser.add_argument(
- '--mn-tolerance', type=float, default=0.01,
- help='Tolerance for MultiNest'
- )
- parser.add_argument(
- '--mn-efficiency', type=float, default=0.3,
- help='Sampling efficiency for MultiNest'
- )
- parser.add_argument(
- '--mn-output', type=str, default='./mnrun/',
- help='Folder to store MultiNest evaluations'
- )
- parser.add_argument(
- '--run-mn', type=parse_bool, default='True',
- help='Run MultiNest'
- )
-
-
-def mn_evidence(mn_paramset, llh_paramset, asimov_paramset, args, prefix='mn'):
- """Run the MultiNest algorithm to calculate the evidence."""
- n_params = len(mn_paramset)
-
- for n in mn_paramset.names:
- llh_paramset[n].value = mn_paramset[n].value
-
- lnProbEval = partial(
- lnProb,
- mn_paramset = mn_paramset,
- llh_paramset = llh_paramset,
- asimov_paramset = asimov_paramset,
- args = args,
- )
-
- if args.run_mn:
- make_dir(prefix)
- print 'Running evidence calculation for {0}'.format(prefix)
- run(
- LogLikelihood = lnProbEval,
- Prior = CubePrior,
- n_dims = n_params,
- n_live_points = args.mn_live_points,
- evidence_tolerance = args.mn_tolerance,
- sampling_efficiency = args.mn_efficiency,
- outputfiles_basename = prefix,
- importance_nested_sampling = True,
- # resume = False,
- resume = True,
- verbose = True
- )
-
- analyser = analyse.Analyzer(
- outputfiles_basename=prefix, n_params=n_params
- )
- return analyser.get_stats()['global evidence']
diff --git a/utils/param.py b/utils/param.py
deleted file mode 100644
index 2378758..0000000
--- a/utils/param.py
+++ /dev/null
@@ -1,213 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : April 19, 2018
-
-"""
-Param class and functions for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-import sys
-
-from collections import Sequence
-from copy import deepcopy
-
-import numpy as np
-
-from utils.fr import fr_to_angles
-from utils.enums import DataType, Likelihood, ParamTag, PriorsCateg
-
-
-class Param(object):
- """Parameter class to store parameters."""
- def __init__(self, name, value, ranges, prior=None, seed=None, std=None,
- tex=None, tag=None):
- self._prior = None
- self._seed = None
- self._ranges = None
- self._tex = None
- self._tag = None
-
- self.name = name
- self.value = value
- self.nominal_value = deepcopy(value)
- self.prior = prior
- self.ranges = ranges
- self.seed = seed
- self.std = std
- self.tex = tex
- self.tag = tag
-
- @property
- def ranges(self):
- return tuple(self._ranges)
-
- @ranges.setter
- def ranges(self, values):
- self._ranges = [val for val in values]
-
- @property
- def prior(self):
- return self._prior
-
- @prior.setter
- def prior(self, value):
- if value is None:
- self._prior = PriorsCateg.UNIFORM
- else:
- assert value in PriorsCateg
- self._prior = value
-
- @property
- def seed(self):
- if self._seed is None: return self.ranges
- return tuple(self._seed)
-
- @seed.setter
- def seed(self, values):
- if values is None: return
- self._seed = [val for val in values]
-
- @property
- def tex(self):
- return r'{0}'.format(self._tex)
-
- @tex.setter
- def tex(self, t):
- self._tex = t if t is not None else r'{\rm %s}' % self.name
-
- @property
- def tag(self):
- return self._tag
-
- @tag.setter
- def tag(self, t):
- if t is None: self._tag = ParamTag.NONE
- else:
- assert t in ParamTag
- self._tag = t
-
-
-class ParamSet(Sequence):
- """Container class for a set of parameters."""
- def __init__(self, *args):
- param_sequence = []
- for arg in args:
- try:
- param_sequence.extend(arg)
- except TypeError:
- param_sequence.append(arg)
-
- if len(param_sequence) != 0:
- # Disallow duplicated params
- all_names = [p.name for p in param_sequence]
- unique_names = set(all_names)
- if len(unique_names) != len(all_names):
- duplicates = set([x for x in all_names if all_names.count(x) > 1])
- raise ValueError('Duplicate definitions found for param(s): ' +
- ', '.join(str(e) for e in duplicates))
-
- # Elements of list must be Param type
- assert all([isinstance(x, Param) for x in param_sequence]), \
- 'All params must be of type "Param"'
-
- self._params = param_sequence
-
- def __len__(self):
- return len(self._params)
-
- def __getitem__(self, i):
- if isinstance(i, int):
- return self._params[i]
- elif isinstance(i, basestring):
- return self._by_name[i]
-
- def __getattr__(self, attr):
- return super(ParamSet, self).__getattribute__(attr)
-
- def __iter__(self):
- return iter(self._params)
-
- def __str__(self):
- o = '\n'
- for obj in self._params:
- o += '== {0:<15} = {1:<15}, tag={2:<15}\n'.format(
- obj.name, obj.value, obj.tag
- )
- return o
-
- @property
- def _by_name(self):
- return {obj.name: obj for obj in self._params}
-
- @property
- def names(self):
- return tuple([obj.name for obj in self._params])
-
- @property
- def labels(self):
- return tuple([obj.tex for obj in self._params])
-
- @property
- def values(self):
- return tuple([obj.value for obj in self._params])
-
- @property
- def nominal_values(self):
- return tuple([obj.nominal_value for obj in self._params])
-
- @property
- def seeds(self):
- return tuple([obj.seed for obj in self._params])
-
- @property
- def ranges(self):
- return tuple([obj.ranges for obj in self._params])
-
- @property
- def stds(self):
- return tuple([obj.std for obj in self._params])
-
- @property
- def tags(self):
- return tuple([obj.tag for obj in self._params])
-
- @property
- def params(self):
- return self._params
-
- def to_dict(self):
- return {obj.name: obj.value for obj in self._params}
-
- def from_tag(self, tag, values=False, index=False, invert=False):
- if values and index: assert 0
- tag = np.atleast_1d(tag)
- if not invert:
- ps = [(idx, obj) for idx, obj in enumerate(self._params)
- if obj.tag in tag]
- else:
- ps = [(idx, obj) for idx, obj in enumerate(self._params)
- if obj.tag not in tag]
- if values:
- return tuple([io[1].value for io in ps])
- elif index:
- return tuple([io[0] for io in ps])
- else:
- return ParamSet([io[1] for io in ps])
-
- def remove_params(self, params):
- rm_paramset = []
- for parm in self.params:
- if parm.name not in params.names:
- rm_paramset.append(parm)
- return ParamSet(rm_paramset)
-
- def extend(self, p):
- param_sequence = self.params
- if isinstance(p, Param):
- param_sequence.append(p)
- elif isinstance(p, ParamSet):
- param_sequence.extend(p.params)
- return ParamSet(param_sequence)
diff --git a/utils/plot.py b/utils/plot.py
deleted file mode 100644
index d19a52e..0000000
--- a/utils/plot.py
+++ /dev/null
@@ -1,1030 +0,0 @@
-# author : S. Mandalia
-# s.p.mandalia@qmul.ac.uk
-#
-# date : March 19, 2018
-
-"""
-Plotting functions for the BSM flavour ratio analysis
-"""
-
-from __future__ import absolute_import, division
-
-import os
-import socket
-from copy import deepcopy
-
-import numpy as np
-import numpy.ma as ma
-from scipy.interpolate import splev, splprep
-from scipy.ndimage.filters import gaussian_filter
-
-import matplotlib as mpl
-import matplotlib.patches as patches
-import matplotlib.gridspec as gridspec
-mpl.use('Agg')
-
-from matplotlib import rc
-from matplotlib import pyplot as plt
-from matplotlib.offsetbox import AnchoredText
-from matplotlib.lines import Line2D
-from matplotlib.patches import Patch
-from matplotlib.patches import Arrow
-
-tRed = list(np.array([226,101,95]) / 255.)
-tBlue = list(np.array([96,149,201]) / 255.)
-tGreen = list(np.array([170,196,109]) / 255.)
-
-import getdist
-from getdist import plots, mcsamples
-
-import ternary
-from ternary.heatmapping import polygon_generator
-
-import shapely.geometry as geometry
-
-from shapely.ops import cascaded_union, polygonize
-from scipy.spatial import Delaunay
-
-from utils.enums import DataType, str_enum
-from utils.enums import Likelihood, ParamTag, StatCateg, Texture
-from utils.misc import get_units, make_dir, solve_ratio, interval
-from utils.fr import angles_to_u, angles_to_fr, SCALE_BOUNDARIES
-
-
-BAYES_K = 1. # Strong degree of belief.
-# BAYES_K = 3/2. # Very strong degree of belief.
-# BAYES_K = 2. # Decisive degree of belief
-
-
-LV_ATMO_90PC_LIMITS = {
- 3: (2E-24, 1E-1),
- 4: (2.7E-28, 3.16E-25),
- 5: (1.5E-32, 1.12E-27),
- 6: (9.1E-37, 2.82E-30),
- 7: (3.6E-41, 1.77E-32),
- 8: (1.4E-45, 1.00E-34)
-}
-
-
-PS = 8.203E-20 # GeV^{-1}
-PLANCK_SCALE = {
- 5: PS,
- 6: PS**2,
- 7: PS**3,
- 8: PS**4
-}
-
-
-if os.path.isfile('./plot_llh/paper.mplstyle'):
- plt.style.use('./plot_llh/paper.mplstyle')
-elif os.environ.get('GOLEMSOURCEPATH') is not None:
- plt.style.use(os.environ['GOLEMSOURCEPATH']+'/GolemFit/scripts/paper/paper.mplstyle')
-if 'submitter' in socket.gethostname():
- rc('text', usetex=False)
-
-mpl.rcParams['text.latex.preamble'] = [
- r'\usepackage{xcolor}',
- r'\usepackage{amsmath}',
- r'\usepackage{amssymb}']
-mpl.rcParams['text.latex.unicode'] = True
-
-
-def gen_figtext(args):
- """Generate the figure text."""
- t = r'$'
- if args.data is DataType.REAL:
- t += r'\textbf{IceCube\:Preliminary}' + '$\n$'
- elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
- t += r'{\rm\bf IceCube\:Simulation}' + '$\n$'
- t += r'\rm{Injected\:composition}'+r'\:=\:({0})_\oplus'.format(
- solve_ratio(args.injected_ratio).replace('_', ':')
- ) + '$\n$'
- t += r'{\rm Source\:composition}'+r'\:=\:({0})'.format(
- solve_ratio(args.source_ratio).replace('_', ':')
- ) + r'_\text{S}'
- t += '$\n$' + r'{\rm Dimension}'+r' = {0}$'.format(args.dimension)
- return t
-
-
-def texture_label(x, dim):
- cpt = r'c' if dim % 2 == 0 else r'a'
- if x == Texture.OEU:
- # return r'$\mathcal{O}_{e\mu}$'
- return r'$\mathring{'+cpt+r'}_{e\mu}^{('+str(int(dim))+r')}$'
- elif x == Texture.OET:
- # return r'$\mathcal{O}_{e\tau}$'
- return r'$\mathring{'+cpt+r'}_{\tau e}^{('+str(int(dim))+r')}$'
- elif x == Texture.OUT:
- # return r'$\mathcal{O}_{\mu\tau}$'
- return r'$\mathring{'+cpt+r'}_{\mu\tau}^{('+str(int(dim))+r')}$'
- else:
- raise AssertionError
-
-
-def cmap_discretize(cmap, N):
- colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.)))
- colors_rgba = cmap(colors_i)
- indices = np.linspace(0, 1., N+1)
- cdict = {}
- for ki,key in enumerate(('red','green','blue')):
- cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki]) for i in xrange(N+1) ]
- # Return colormap object.
- return mpl.colors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
-
-
-def get_limit(scales, statistic, args, mask_initial=False, return_interp=False):
- max_st = np.max(statistic)
- print 'scales, stat', zip(scales, statistic)
- if args.stat_method is StatCateg.BAYESIAN:
- if (statistic[0] - max_st) > np.log(10**(BAYES_K)):
- raise AssertionError('Discovered LV!')
-
- try:
- tck, u = splprep([scales, statistic], s=0)
- except:
- print 'Failed to spline'
- # return None
- raise
- sc, st = splev(np.linspace(0, 1, 1000), tck)
-
- if mask_initial:
- scales_rm = sc[sc >= scales[1]]
- statistic_rm = st[sc >= scales[1]]
- else:
- scales_rm = sc
- statistic_rm = st
-
- min_idx = np.argmin(scales)
- null = statistic[min_idx]
- # if np.abs(statistic_rm[0] - null) > 0.8:
- # print 'Warning, null incompatible with smallest scanned scale! For ' \
- # 'DIM {0} [{1}, {2}, {3}]!'.format(
- # args.dimension, *args.source_ratio
- # )
- # null = statistic_rm[0]
- if args.stat_method is StatCateg.BAYESIAN:
- reduced_ev = -(statistic_rm - null)
- print '[reduced_ev > np.log(10**(BAYES_K))]', np.sum([reduced_ev > np.log(10**(BAYES_K))])
- al = scales_rm[reduced_ev > np.log(10**(BAYES_K))]
- else:
- assert 0
- if len(al) == 0:
- print 'No points for DIM {0} [{1}, {2}, {3}]!'.format(
- args.dimension, *args.source_ratio
- )
- return None
- re = -(statistic-null)[scales > al[0]]
- if np.sum(re < np.log(10**(BAYES_K)) - 0.1) >= 2:
- print 'Warning, peaked contour does not exclude large scales! For ' \
- 'DIM {0} [{1}, {2}, {3}]!'.format(
- args.dimension, *args.source_ratio
- )
- return None
- if np.sum(re >= np.log(10**(BAYES_K)) + 0.0) < 2:
- print 'Warning, only single point above threshold! For ' \
- 'DIM {0} [{1}, {2}, {3}]!'.format(
- args.dimension, *args.source_ratio
- )
- return None
-
- if return_interp:
- return (scales_rm, reduced_ev)
-
- # Divide by 2 to convert to standard SME coefficient
- lim = al[0] - np.log10(2.)
- # lim = al[0]
- print 'limit = {0}'.format(lim)
- return lim
-
-
-def heatmap(data, scale, vmin=None, vmax=None, style='triangular'):
- for k, v in data.items():
- data[k] = np.array(v)
- style = style.lower()[0]
- if style not in ["t", "h", 'd']:
- raise ValueError("Heatmap style must be 'triangular', 'dual-triangular', or 'hexagonal'")
-
- vertices_values = polygon_generator(data, scale, style)
-
- vertices = []
- for v, value in vertices_values:
- vertices.append(v)
- return vertices
-
-
-def get_tax(ax, scale, ax_labels, rot_ax_labels=False, fontsize=23):
- ax.set_aspect('equal')
-
- # Boundary and Gridlines
- fig, tax = ternary.figure(ax=ax, scale=scale)
-
- # Draw Boundary and Gridlines
- tax.boundary(linewidth=2.0)
- tax.gridlines(color='grey', multiple=scale/5., linewidth=0.5, alpha=0.7, ls='--')
- # tax.gridlines(color='grey', multiple=scale/10., linewidth=0.2, alpha=1, ls=':')
-
- # Set Axis labels and Title
- if rot_ax_labels: roty, rotz = (-60, 60)
- else: roty, rotz = (0, 0)
- tax.bottom_axis_label(
- ax_labels[0], fontsize=fontsize+4,
- position=(0.55, -0.10/2, 0.5), rotation=0
- )
- tax.right_axis_label(
- ax_labels[1], fontsize=fontsize+4,
- position=(2./5+0.1, 3./5+0.06, 0), rotation=roty
- )
- tax.left_axis_label(
- ax_labels[2], fontsize=fontsize+4,
- position=(-0.15, 3./5+0.1, 2./5), rotation=rotz
- )
-
- # Remove default Matplotlib axis
- tax.get_axes().axis('off')
- tax.clear_matplotlib_ticks()
-
- # Set ticks
- ticks = np.linspace(0, 1, 6)
- tax.ticks(ticks=ticks, locations=ticks*scale, axis='lr', linewidth=1,
- offset=0.03, fontsize=fontsize, tick_formats='%.1f')
- tax.ticks(ticks=ticks, locations=ticks*scale, axis='b', linewidth=1,
- offset=0.02, fontsize=fontsize, tick_formats='%.1f')
- # tax.ticks()
-
- tax._redraw_labels()
-
- return tax
-
-
-def project(p):
- """Convert from flavour to cartesian."""
- a, b, c = p
- x = a + b/2.
- y = b * np.sqrt(3)/2.
- return [x, y]
-
-
-def project_toflavour(p, nbins):
- """Convert from cartesian to flavour space."""
- x, y = p
- b = y / (np.sqrt(3)/2.)
- a = x - b/2.
- return [a, b, nbins-a-b]
-
-
-def tax_fill(ax, points, nbins, **kwargs):
- pol = np.array(map(project, points))
- ax.fill(pol.T[0]*nbins, pol.T[1]*nbins, **kwargs)
-
-
-def alpha_shape(points, alpha):
- """
- Compute the alpha shape (concave hull) of a set
- of points.
- @param points: Iterable container of points.
- @param alpha: alpha value to influence the
- gooeyness of the border. Smaller numbers
- don't fall inward as much as larger numbers.
- Too large, and you lose everything!
- """
- if len(points) < 4:
- # When you have a triangle, there is no sense
- # in computing an alpha shape.
- return geometry.MultiPoint(list(points)).convex_hull
- def add_edge(edges, edge_points, coords, i, j):
- """
- Add a line between the i-th and j-th points,
- if not in the list already
- """
- if (i, j) in edges or (j, i) in edges:
- # already added
- return
- edges.add( (i, j) )
- edge_points.append(coords[ [i, j] ])
- coords = np.array([point.coords[0]
- for point in points])
- tri = Delaunay(coords)
- edges = set()
- edge_points = []
- # loop over triangles:
- # ia, ib, ic = indices of corner points of the
- # triangle
- for ia, ib, ic in tri.vertices:
- pa = coords[ia]
- pb = coords[ib]
- pc = coords[ic]
- # Lengths of sides of triangle
- a = np.sqrt((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)
- b = np.sqrt((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)
- c = np.sqrt((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)
- # Semiperimeter of triangle
- s = (a + b + c)/2.0
- # Area of triangle by Heron's formula
- area = np.sqrt(s*(s-a)*(s-b)*(s-c))
- circum_r = a*b*c/(4.0*area)
- # Here's the radius filter.
- #print circum_r
- if circum_r < 1.0/alpha:
- add_edge(edges, edge_points, coords, ia, ib)
- add_edge(edges, edge_points, coords, ib, ic)
- add_edge(edges, edge_points, coords, ic, ia)
- m = geometry.MultiLineString(edge_points)
- triangles = list(polygonize(m))
- return cascaded_union(triangles), edge_points
-
-
-def flavour_contour(frs, nbins, coverage, ax=None, smoothing=0.4,
- hist_smooth=0.05, plot=True, fill=False, oversample=1.,
- delaunay=False, d_alpha=1.5, d_gauss=0.08, debug=False,
- **kwargs):
- """Plot the flavour contour for a specified coverage."""
- # Histogram in flavour space
- os_nbins = nbins * oversample
- H, b = np.histogramdd(
- (frs[:,0], frs[:,1], frs[:,2]),
- bins=(os_nbins+1, os_nbins+1, os_nbins+1),
- range=((0, 1), (0, 1), (0, 1))
- )
- H = H / np.sum(H)
-
- # 3D smoothing
- H_s = gaussian_filter(H, sigma=hist_smooth)
-
- # Finding coverage
- H_r = np.ravel(H_s)
- H_rs = np.argsort(H_r)[::-1]
- H_crs = np.cumsum(H_r[H_rs])
- thres = np.searchsorted(H_crs, coverage/100.)
- mask_r = np.zeros(H_r.shape)
- mask_r[H_rs[:thres]] = 1
- mask = mask_r.reshape(H_s.shape)
-
- # Get vertices inside covered region
- binx = np.linspace(0, 1, os_nbins+1)
- interp_dict = {}
- for i in xrange(len(binx)):
- for j in xrange(len(binx)):
- for k in xrange(len(binx)):
- if mask[i][j][k] == 1:
- interp_dict[(i, j, k)] = H_s[i, j, k]
- vertices = np.array(heatmap(interp_dict, os_nbins))
- points = vertices.reshape((len(vertices)*3, 2))
- if debug:
- ax.scatter(*(points/float(oversample)).T, marker='o', s=3, alpha=1.0, color=kwargs['color'], zorder=9)
-
- pc = geometry.MultiPoint(points)
- if not delaunay:
- # Convex full to find points forming exterior bound
- polygon = pc.convex_hull
- ex_cor = np.array(list(polygon.exterior.coords))
- else:
- # Delaunay
- concave_hull, edge_points = alpha_shape(pc, alpha=d_alpha)
- polygon = geometry.Polygon(concave_hull.buffer(1))
- if d_gauss == 0.:
- ex_cor = np.array(list(polygon.exterior.coords))
- else:
- ex_cor = gaussian_filter(
- np.array(list(polygon.exterior.coords)), sigma=d_gauss
- )
-
- # Join points with a spline
- tck, u = splprep([ex_cor.T[0], ex_cor.T[1]], s=0., per=1, k=1)
- xi, yi = map(np.array, splev(np.linspace(0, 1, 300), tck))
-
- # Spline again to smooth
- if smoothing != 0:
- tck, u = splprep([xi, yi], s=smoothing, per=1, k=3)
- xi, yi = map(np.array, splev(np.linspace(0, 1, 600), tck))
-
- xi /= float(oversample)
- yi /= float(oversample)
- ev_polygon = np.dstack((xi, yi))[0]
-
- # Remove points interpolated outside flavour triangle
- f_ev_polygon = np.array(map(lambda x: project_toflavour(x, nbins), ev_polygon))
-
- xf, yf, zf = f_ev_polygon.T
- mask = np.array((xf < 0) | (yf < 0) | (zf < 0) | (xf > nbins) |
- (yf > nbins) | (zf > nbins))
- ev_polygon = np.dstack((xi[~mask], yi[~mask]))[0]
-
- # Plot
- if plot:
- if fill:
- ax.fill(
- ev_polygon.T[0], ev_polygon.T[1],
- label=r'{0}\%'.format(int(coverage)), **kwargs
- )
- else:
- ax.plot(
- ev_polygon.T[0], ev_polygon.T[1],
- label=r'{0}\%'.format(int(coverage)), **kwargs
- )
- else:
- return ev_polygon
-
-def plot_Tchain(Tchain, axes_labels, ranges):
- """Plot the Tchain using getdist."""
- Tsample = mcsamples.MCSamples(
- samples=Tchain, labels=axes_labels, ranges=ranges
- )
-
- Tsample.updateSettings({'contours': [0.90, 0.99]})
- Tsample.num_bins_2D=10
- Tsample.fine_bins_2D=50
- Tsample.smooth_scale_2D=0.05
-
- g = plots.getSubplotPlotter()
- g.settings.num_plot_contours = 2
- g.settings.axes_fontsize = 10
- g.settings.figure_legend_frame = False
- g.settings.lab_fontsize = 20
- g.triangle_plot(
- [Tsample], filled=True,# contour_colors=['green', 'lightgreen']
- )
- return g
-
-
-def chainer_plot(infile, outfile, outformat, args, llh_paramset, fig_text=None,
- labels=None, ranges=None):
- """Make the triangle plot."""
- if hasattr(args, 'plot_elements'):
- if not args.plot_angles and not args.plot_elements:
- return
- elif not args.plot_angles:
- return
-
- if not isinstance(infile, np.ndarray):
- raw = np.load(infile)
- else:
- raw = infile
- print 'raw.shape', raw.shape
- print 'raw', raw
-
- make_dir(outfile), make_dir
- if fig_text is None:
- fig_text = gen_figtext(args)
-
- if labels is None: axes_labels = llh_paramset.labels
- else: axes_labels = labels
- if ranges is None: ranges = llh_paramset.ranges
-
- if args.plot_angles:
- print "Making triangle plots"
- Tchain = raw
- g = plot_Tchain(Tchain, axes_labels, ranges)
-
- mpl.pyplot.figtext(0.6, 0.7, fig_text, fontsize=20)
-
- # for i_ax_1, ax_1 in enumerate(g.subplots):
- # for i_ax_2, ax_2 in enumerate(ax_1):
- # if i_ax_1 == i_ax_2:
- # itv = interval(Tchain[:,i_ax_1], percentile=90.)
- # for l in itv:
- # ax_2.axvline(l, color='gray', ls='--')
- # ax_2.set_title(r'${0:.2f}_{{{1:.2f}}}^{{+{2:.2f}}}$'.format(
- # itv[1], itv[0]-itv[1], itv[2]-itv[1]
- # ), fontsize=10)
-
- # if not args.fix_mixing:
- # sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
- # itv = interval(Tchain[:,sc_index], percentile=90.)
- # mpl.pyplot.figtext(
- # 0.5, 0.3, 'Scale 90% Interval = [1E{0}, 1E{1}], Center = '
- # '1E{2}'.format(itv[0], itv[2], itv[1])
- # )
-
- for of in outformat:
- print 'Saving', outfile+'_angles.'+of
- g.export(outfile+'_angles.'+of)
-
- if not hasattr(args, 'plot_elements'):
- return
-
- if args.plot_elements:
- print "Making triangle plots"
- if args.fix_mixing_almost:
- raise NotImplementedError
- nu_index = llh_paramset.from_tag(ParamTag.NUISANCE, index=True)
- fr_index = llh_paramset.from_tag(ParamTag.MMANGLES, index=True)
- sc_index = llh_paramset.from_tag(ParamTag.SCALE, index=True)
- if not args.fix_source_ratio:
- sr_index = llh_paramset.from_tag(ParamTag.SRCANGLES, index=True)
-
- nu_elements = raw[:,nu_index]
- fr_elements = np.array(map(flat_angles_to_u, raw[:,fr_index]))
- sc_elements = raw[:,sc_index]
- if not args.fix_source_ratio:
- sr_elements = np.array(map(angles_to_fr, raw[:,sr_index]))
- if args.fix_source_ratio:
- Tchain = np.column_stack(
- [nu_elements, fr_elements, sc_elements]
- )
- else:
- Tchain = np.column_stack(
- [nu_elements, fr_elements, sc_elements, sr_elements]
- )
-
- trns_ranges = np.array(ranges)[nu_index,].tolist()
- trns_axes_labels = np.array(axes_labels)[nu_index,].tolist()
- if args.fix_mixing is not MixingScenario.NONE:
- trns_axes_labels += \
- [r'\mid \tilde{U}_{e1} \mid' , r'\mid \tilde{U}_{e2} \mid' , r'\mid \tilde{U}_{e3} \mid' , \
- r'\mid \tilde{U}_{\mu1} \mid' , r'\mid \tilde{U}_{\mu2} \mid' , r'\mid \tilde{U}_{\mu3} \mid' , \
- r'\mid \tilde{U}_{\tau1} \mid' , r'\mid \tilde{U}_{\tau2} \mid' , r'\mid \tilde{U}_{\tau3} \mid']
- trns_ranges += [(0, 1)] * 9
- if not args.fix_scale:
- trns_axes_labels += [np.array(axes_labels)[sc_index].tolist()]
- trns_ranges += [np.array(ranges)[sc_index].tolist()]
- if not args.fix_source_ratio:
- trns_axes_labels += [r'\phi_e', r'\phi_\mu', r'\phi_\tau']
- trns_ranges += [(0, 1)] * 3
-
- g = plot_Tchain(Tchain, trns_axes_labels, trns_ranges)
-
- if args.data is DataType.REAL:
- plt.text(0.8, 0.7, 'IceCube Preliminary', color='red', fontsize=15,
- ha='center', va='center')
- elif args.data in [DataType.ASIMOV, DataType.REALISATION]:
- plt.text(0.8, 0.7, 'IceCube Simulation', color='red', fontsize=15,
- ha='center', va='center')
-
- mpl.pyplot.figtext(0.5, 0.7, fig_text, fontsize=15)
- for of in outformat:
- print 'Saving', outfile+'_elements'+of
- g.export(outfile+'_elements.'+of)
-
-
-def plot_statistic(data, outfile, outformat, args, scale_param, label=None):
- """Make MultiNest factor or LLH value plot."""
- print 'Making Statistic plot'
- fig_text = gen_figtext(args)
- if label is not None: fig_text += '\n' + label
-
- print 'data', data
- print 'data.shape', data.shape
- print 'outfile', outfile
- try:
- scales, statistic = ma.compress_rows(data).T
- lim = get_limit(deepcopy(scales), deepcopy(statistic), args, mask_initial=True)
- tck, u = splprep([scales, statistic], s=0)
- except:
- return
- sc, st = splev(np.linspace(0, 1, 1000), tck)
- scales_rm = sc[sc >= scales[1]]
- statistic_rm = st[sc >= scales[1]]
-
- min_idx = np.argmin(scales)
- null = statistic[min_idx]
- # fig_text += '\nnull lnZ = {0:.2f}'.format(null)
-
- if args.stat_method is StatCateg.BAYESIAN:
- reduced_ev = -(statistic_rm - null)
- elif args.stat_method is StatCateg.FREQUENTIST:
- reduced_ev = -2*(statistic_rm - null)
-
- fig = plt.figure(figsize=(7, 5))
- ax = fig.add_subplot(111)
-
- xlims = SCALE_BOUNDARIES[args.dimension]
- ax.set_xlim(xlims)
- ax.set_xlabel(r'${\rm log}_{10}\left[\Lambda^{-1}_{'+ \
- r'{0}'.format(args.dimension)+r'}'+ \
- get_units(args.dimension)+r'\right]$', fontsize=16)
-
- if args.stat_method is StatCateg.BAYESIAN:
- ax.set_ylabel(r'$\text{Bayes\:Factor}\:\left[\text{ln}\left(B_{0/1}\right)\right]$')
- elif args.stat_method is StatCateg.FREQUENTIST:
- ax.set_ylabel(r'$-2\Delta {\rm LLH}$')
-
- # ymin = np.round(np.min(reduced_ev) - 1.5)
- # ymax = np.round(np.max(reduced_ev) + 1.5)
- # ax.set_ylim((ymin, ymax))
-
- ax.scatter(scales[1:], -(statistic[1:]-null), color='r')
- ax.plot(scales_rm, reduced_ev, color='k', linewidth=1, alpha=1, ls='-')
-
- ax.axhline(y=np.log(10**(BAYES_K)), color='red', alpha=1., linewidth=1.2, ls='--')
- ax.axvline(x=lim, color='red', alpha=1., linewidth=1.2, ls='--')
-
- at = AnchoredText(
- fig_text, prop=dict(size=10), frameon=True, loc=4
- )
- at.patch.set_boxstyle("round,pad=0.1,rounding_size=0.5")
- ax.add_artist(at)
- make_dir(outfile)
- for of in outformat:
- print 'Saving as {0}'.format(outfile+'.'+of)
- fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
-
-
-def plot_table_sens(data, outfile, outformat, args, show_lvatmo=True):
- print 'Making TABLE sensitivity plot'
- argsc = deepcopy(args)
-
- dims = args.dimensions
- srcs = args.source_ratios
- if args.texture is Texture.NONE:
- textures = [Texture.OET, Texture.OUT]
- else:
- textures = [args.texture]
-
- if len(srcs) > 3:
- raise NotImplementedError
-
- xlims = (-60, -20)
- ylims = (0.5, 1.5)
-
- colour = {2:'red', 1:'blue', 0:'green'}
- rgb_co = {2:[1,0,0], 1:[0,0,1], 0:[0.0, 0.5019607843137255, 0.0]}
-
- fig = plt.figure(figsize=(8, 6))
- gs = gridspec.GridSpec(len(dims), 1)
- gs.update(hspace=0.15)
-
- first_ax = None
- legend_log = []
- legend_elements = []
-
- for idim, dim in enumerate(dims):
- print '|||| DIM = {0}'.format(dim)
- argsc.dimension = dim
- gs0 = gridspec.GridSpecFromSubplotSpec(
- len(textures), 1, subplot_spec=gs[idim], hspace=0
- )
-
- for itex, tex in enumerate(textures):
- argsc.texture = tex
- ylabel = texture_label(tex, dim)
- # if angles == 2 and ian == 0: continue
- ax = fig.add_subplot(gs0[itex])
-
- if first_ax is None:
- first_ax = ax
-
- ax.set_xlim(xlims)
- ax.set_ylim(ylims)
- ax.set_yticks([], minor=True)
- ax.set_yticks([1.], minor=False)
- ax.set_yticklabels([ylabel], fontsize=13)
- ax.yaxis.tick_right()
- for xmaj in ax.xaxis.get_majorticklocs():
- ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.2, linewidth=1)
- ax.get_xaxis().set_visible(False)
- if itex == len(textures) - 2:
- ax.spines['bottom'].set_alpha(0.6)
- elif itex == len(textures) - 1:
- ax.text(
- -0.04, 1.0, '$d = {0}$'.format(dim), fontsize=16,
- rotation='90', verticalalignment='center',
- transform=ax.transAxes
- )
- # dim_label_flag = False
- ax.spines['top'].set_alpha(0.6)
- ax.spines['bottom'].set_alpha(0.6)
-
- for isrc, src in enumerate(srcs):
- print '== src', src
- argsc.source_ratio = src
-
- if dim in PLANCK_SCALE.iterkeys():
- ps = np.log10(PLANCK_SCALE[dim])
- if ps < xlims[0]:
- ax.annotate(
- s='', xy=(xlims[0], 1), xytext=(xlims[0]+1, 1),
- arrowprops={'arrowstyle': '->, head_length=0.2',
- 'lw': 1, 'color':'purple'}
- )
- elif ps > xlims[1]:
- ax.annotate(
- s='', xy=(xlims[1]-1, 1), xytext=(xlims[1], 1),
- arrowprops={'arrowstyle': '<-, head_length=0.2',
- 'lw': 1, 'color':'purple'}
- )
- else:
- ax.axvline(x=ps, color='purple', alpha=1., linewidth=1.5)
-
- try:
- scales, statistic = ma.compress_rows(data[idim][isrc][itex]).T
- except: continue
- lim = get_limit(deepcopy(scales), deepcopy(statistic), argsc, mask_initial=True)
- if lim is None: continue
-
- ax.axvline(x=lim, color=colour[isrc], alpha=1., linewidth=1.5)
- ax.add_patch(patches.Rectangle(
- (lim, ylims[0]), 100, np.diff(ylims), fill=True,
- facecolor=colour[isrc], alpha=0.3, linewidth=0
- ))
-
- if isrc not in legend_log:
- legend_log.append(isrc)
- label = r'$\left('+r'{0}'.format(solve_ratio(src)).replace('_',':')+ \
- r'\right)_{\text{S}}\:\text{at\:source}$'
- legend_elements.append(
- Patch(facecolor=rgb_co[isrc]+[0.3],
- edgecolor=rgb_co[isrc]+[1], label=label)
- )
-
- if itex == len(textures)-1 and show_lvatmo:
- LV_lim = np.log10(LV_ATMO_90PC_LIMITS[dim])
- ax.add_patch(patches.Rectangle(
- (LV_lim[1], ylims[0]), LV_lim[0]-LV_lim[1], np.diff(ylims),
- fill=False, hatch='\\\\'
- ))
-
- ax.get_xaxis().set_visible(True)
- ax.set_xlabel(r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} (\Lambda^{-1}_{d}\:/\:{\rm GeV}^{-d+4})\: ]$',
- labelpad=5, fontsize=19)
- ax.tick_params(axis='x', labelsize=16)
-
- purple = [0.5019607843137255, 0.0, 0.5019607843137255]
- if show_lvatmo:
- legend_elements.append(
- Patch(facecolor='none', hatch='\\\\', edgecolor='k', label='IceCube, Nature.Phy.14,961(2018)')
- )
- legend_elements.append(
- Patch(facecolor=purple+[0.7], edgecolor=purple+[1], label='Planck Scale Expectation')
- )
- legend = first_ax.legend(
- handles=legend_elements, prop=dict(size=11), loc='upper left',
- title='Excluded regions', framealpha=1., edgecolor='black',
- frameon=True
- )
- first_ax.set_zorder(10)
- plt.setp(legend.get_title(), fontsize='11')
- legend.get_frame().set_linestyle('-')
-
- ybound = 0.595
- if args.data is DataType.REAL:
- # fig.text(0.295, 0.684, 'IceCube Preliminary', color='red', fontsize=13,
- fig.text(0.278, ybound, r'\bf IceCube Preliminary', color='red', fontsize=13,
- ha='center', va='center', zorder=11)
- elif args.data is DataType.REALISATION:
- fig.text(0.278, ybound-0.05, r'\bf IceCube Simulation', color='red', fontsize=13,
- ha='center', va='center', zorder=11)
- else:
- fig.text(0.278, ybound, r'\bf IceCube Simulation', color='red', fontsize=13,
- ha='center', va='center', zorder=11)
-
- make_dir(outfile)
- for of in outformat:
- print 'Saving plot as {0}'.format(outfile+'.'+of)
- fig.savefig(outfile+'.'+of, bbox_inches='tight', dpi=150)
-
-
-def plot_x(data, outfile, outformat, args, normalise=False):
- """Limit plot as a function of the source flavour ratio for each operator
- texture."""
- print 'Making X sensitivity plot'
- dim = args.dimension
- if dim < 5: normalise = False
- srcs = args.source_ratios
- x_arr = np.array([i[0] for i in srcs])
- if args.texture is Texture.NONE:
- textures = [Texture.OEU, Texture.OET, Texture.OUT]
- else:
- textures = [args.texture]
-
- # Rearrange data structure
- r_data = np.full((
- data.shape[1], data.shape[0], data.shape[2], data.shape[3]
- ), np.nan)
-
- for isrc in xrange(data.shape[0]):
- for itex in xrange(data.shape[1]):
- r_data[itex][isrc] = data[isrc][itex]
- r_data = ma.masked_invalid(r_data)
- print r_data.shape, 'r_data.shape'
-
- fig = plt.figure(figsize=(7, 6))
- ax = fig.add_subplot(111)
-
- ylims = SCALE_BOUNDARIES[dim]
- if normalise:
- if dim == 5: ylims = (-24, -8)
- if dim == 6: ylims = (-12, 8)
- if dim == 7: ylims = (0, 20)
- if dim == 8: ylims = (12, 36)
- else:
- if dim == 3: ylims = (-28, -22)
- if dim == 4: ylims = (-35, -26)
- if dim == 5: SCALE_BOUNDARIES[5]
- xlims = (0, 1)
-
- colour = {0:'red', 2:'blue', 1:'green'}
- rgb_co = {0:[1,0,0], 2:[0,0,1], 1:[0.0, 0.5019607843137255, 0.0]}
-
- legend_log = []
- legend_elements = []
- labelsize = 13
- largesize = 17
-
- ax.set_xlim(xlims)
- ax.set_ylim(ylims)
- xticks = [0, 1/3., 0.5, 2/3., 1]
- # xlabels = [r'$0$', r'$\frac{1}{3}$', r'$\frac{1}{2}$', r'$\frac{2}{3}$', r'$1$']
- xlabels = [r'$0$', r'$1 / 3$', r'$1/2$', r'$2/3$', r'$1$']
- ax.set_xticks([], minor=True)
- ax.set_xticks(xticks, minor=False)
- ax.set_xticklabels(xlabels, fontsize=largesize)
- if dim != 4 or dim != 3:
- yticks = range(ylims[0], ylims[1], 2) + [ylims[1]]
- ax.set_yticks(yticks, minor=False)
- if dim == 3 or dim == 4:
- yticks = range(ylims[0], ylims[1], 1) + [ylims[1]]
- ax.set_yticks(yticks, minor=False)
- # for ymaj in ax.yaxis.get_majorticklocs():
- # ax.axhline(y=ymaj, ls=':', color='gray', alpha=0.2, linewidth=1)
- for xmaj in xticks:
- if xmaj == 1/3.:
- ax.axvline(x=xmaj, ls='--', color='gray', alpha=0.5, linewidth=0.3)
- # else:
- # ax.axvline(x=xmaj, ls=':', color='gray', alpha=0.2, linewidth=1)
-
- ax.text(
- (1/3.)+0.01, 0.01, r'$(0.33:0.66:0)_\text{S}$', fontsize=labelsize,
- transform=ax.transAxes, rotation='vertical', va='bottom'
- )
- ax.text(
- 0.96, 0.01, r'$(1:0:0)_\text{S}$', fontsize=labelsize,
- transform=ax.transAxes, rotation='vertical', va='bottom', ha='left'
- )
- ax.text(
- 0.01, 0.01, r'$(0:1:0)_\text{S}$', fontsize=labelsize,
- transform=ax.transAxes, rotation='vertical', va='bottom'
- )
- yl = 0.55
- if dim == 3: yl = 0.65
- ax.text(
- 0.03, yl, r'${\rm \bf Excluded}$', fontsize=largesize,
- transform=ax.transAxes, color = 'g', rotation='vertical', zorder=10
- )
- ax.text(
- 0.95, 0.55, r'${\rm \bf Excluded}$', fontsize=largesize,
- transform=ax.transAxes, color = 'b', rotation='vertical', zorder=10
- )
-
- for itex, tex in enumerate(textures):
- print '|||| TEX = {0}'.format(tex)
- lims = np.full(len(srcs), np.nan)
-
- for isrc, src in enumerate(srcs):
- x = src[0]
- print '|||| X = {0}'.format(x)
- args.source_ratio = src
- d = r_data[itex][isrc]
- if np.sum(d.mask) > 2: continue
- scales, statistic = ma.compress_rows(d).T
- lim = get_limit(deepcopy(scales), deepcopy(statistic), args, mask_initial=True)
- if lim is None: continue
- if normalise:
- lim -= np.log10(PLANCK_SCALE[dim])
- lims[isrc] = lim
-
- lims = ma.masked_invalid(lims)
- size = np.sum(~lims.mask)
- if size == 0: continue
-
- print 'x_arr, lims', zip(x_arr, lims)
- if normalise:
- zeropoint = 100
- else:
- zeropoint = 0
- lims[lims.mask] = zeropoint
-
- l0 = np.argwhere(lims == zeropoint)[0]
- h0 = len(lims) - np.argwhere(np.flip(lims, 0) == zeropoint)[0]
- lims[int(l0):int(h0)] = zeropoint
-
- x_arr_a = [x_arr[0]-0.1] + list(x_arr)
- x_arr_a = list(x_arr_a) + [x_arr_a[-1]+0.1]
- lims = [lims[0]] + list(lims)
- lims = list(lims) + [lims[-1]]
-
- s = 0.2
- g = 2
- if dim == 3 and tex == Texture.OUT:
- s = 0.4
- g = 4
- if dim in (4,5) and tex == Texture.OUT:
- s = 0.5
- g = 5
- if dim == 7 and tex == Texture.OET:
- s = 1.6
- g = 2
- if dim == 7 and tex == Texture.OUT:
- s = 2.0
- g = 20
- if dim == 8 and tex == Texture.OET:
- s = 0.8
- g = 6
- if dim == 8 and tex == Texture.OUT:
- s = 1.7
- g = 8
-
- # ax.scatter(x_arr_a, lims, color='black', s=1)
- tck, u = splprep([x_arr_a, lims], s=0, k=1)
- x, y = splev(np.linspace(0, 1, 200), tck)
- tck, u = splprep([x, y], s=s)
- x, y = splev(np.linspace(0, 1, 400), tck)
- y = gaussian_filter(y, sigma=g)
- ax.fill_between(x, y, zeropoint, color=rgb_co[itex]+[0.3])
- # ax.scatter(x, y, color='black', s=1)
- # ax.scatter(x_arr_a, lims, color=rgb_co[itex], s=8)
-
- if itex not in legend_log:
- legend_log.append(itex)
- # label = texture_label(tex, dim)[:-1] + r'\:{\rm\:texture}$'
- label = texture_label(tex, dim)[:-1] + r'\:({\rm this\:work})$'
- legend_elements.append(
- Patch(facecolor=rgb_co[itex]+[0.3],
- edgecolor=rgb_co[itex]+[1], label=label)
- )
-
- LV_lim = np.log10(LV_ATMO_90PC_LIMITS[dim])
- if normalise:
- LV_lim -= np.log10(PLANCK_SCALE[dim])
- ax.add_patch(patches.Rectangle(
- (xlims[0], LV_lim[1]), np.diff(xlims), LV_lim[0]-LV_lim[1],
- fill=False, hatch='\\\\'
- ))
-
- if dim in PLANCK_SCALE:
- ps = np.log10(PLANCK_SCALE[dim])
- if normalise and dim == 6:
- ps -= np.log10(PLANCK_SCALE[dim])
- ax.add_patch(Arrow(
- 0.24, -0.009, 0, -5, width=0.12, capstyle='butt',
- facecolor='purple', fill=True, alpha=0.8,
- edgecolor='darkmagenta'
- ))
- ax.add_patch(Arrow(
- 0.78, -0.009, 0, -5, width=0.12, capstyle='butt',
- facecolor='purple', fill=True, alpha=0.8,
- edgecolor='darkmagenta'
- ))
-
- ax.text(
- 0.26, 0.5, r'${\rm \bf Quantum\:Gravity\:Frontier}$',
- fontsize=largesize-2, transform=ax.transAxes, va='top',
- ha='left', color='purple'
- )
- if dim > 5:
- ax.axhline(y=ps, color='purple', alpha=1., linewidth=1.5)
-
- cpt = r'c' if dim % 2 == 0 else r'a'
- if normalise:
- ft = r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} \left (\mathring{'+cpt+r'}^{(' + \
- r'{0}'.format(args.dimension)+r')}\cdot{\rm E}_{\:\rm P}'
- if dim > 5: ft += r'^{\:'+ r'{0}'.format(args.dimension-4)+ r'}'
- ft += r'\right )\: ]$'
- fig.text(
- 0.01, 0.5, ft, ha='left',
- va='center', rotation='vertical', fontsize=largesize
- )
- else:
- fig.text(
- 0.01, 0.5,
- r'${\rm New\:Physics\:Scale}\:[\:{\rm log}_{10} \left (\mathring{'+cpt+r'}^{(' +
- r'{0}'.format(args.dimension)+r')}\:' + get_units(args.dimension) +
- r'\right )\: ]$', ha='left',
- va='center', rotation='vertical', fontsize=largesize
- )
-
- ax.set_xlabel(
- r'${\rm Source\:Composition}\:[\:\left (\:x:1-x:0\:\right )_\text{S}\:]$',
- labelpad=10, fontsize=largesize
- )
- ax.tick_params(axis='x', labelsize=largesize-1)
-
- purple = [0.5019607843137255, 0.0, 0.5019607843137255]
- # legend_elements.append(
- # Patch(facecolor=purple+[0.7], edgecolor=purple+[1], label='Planck Scale Expectation')
- # )
- legend_elements.append(
- Patch(facecolor='none', hatch='\\\\', edgecolor='k', label='IceCube [TODO]')
- )
- legend = ax.legend(
- handles=legend_elements, prop=dict(size=labelsize-2),
- loc='upper center', title='Excluded regions', framealpha=1.,
- edgecolor='black', frameon=True, bbox_to_anchor=(0.5, 1)
- )
- plt.setp(legend.get_title(), fontsize=labelsize)
- legend.get_frame().set_linestyle('-')
-
- # ybound = 0.14
- # if args.data is DataType.REAL:
- # fig.text(0.7, ybound, r'\bf IceCube Preliminary', color='red', fontsize=13,
- # ha='center', va='center', zorder=11)
- # elif args.data is DataType.REALISATION:
- # fig.text(0.7, ybound-0.05, r'\bf IceCube Simulation', color='red', fontsize=13,
- # ha='center', va='center', zorder=11)
- # else:
- # fig.text(0.7, ybound, r'\bf IceCube Simulation', color='red', fontsize=13,
- # ha='center', va='center', zorder=11)
-
- make_dir(outfile)
- for of in outformat:
- print 'Saving plot as {0}'.format(outfile + '.' + of)
- fig.savefig(outfile + '.' + of, bbox_inches='tight', dpi=150)