diff options
| author | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-04-29 14:18:51 -0500 |
|---|---|---|
| committer | shivesh <s.p.mandalia@qmul.ac.uk> | 2018-04-29 14:18:51 -0500 |
| commit | 633e704ebeac09e82d6355dc65420abc376d0a61 (patch) | |
| tree | ffc641e502c68cc29185ee679d42e3ee75021baf /utils | |
| parent | bcc0cc720a6e28eeb5b48c2d4ad16924751e75ff (diff) | |
| download | GolemFlavor-633e704ebeac09e82d6355dc65420abc376d0a61.tar.gz GolemFlavor-633e704ebeac09e82d6355dc65420abc376d0a61.zip | |
Sun Apr 29 14:18:51 CDT 2018
Diffstat (limited to 'utils')
| -rw-r--r-- | utils/fr.py | 4 | ||||
| -rw-r--r-- | utils/likelihood.py | 17 |
2 files changed, 14 insertions, 7 deletions
diff --git a/utils/fr.py b/utils/fr.py index b2a1274..51d5b6a 100644 --- a/utils/fr.py +++ b/utils/fr.py @@ -242,6 +242,10 @@ def fr_argparse(parser): help='Spectral index for spectral energy dependance' ) parser.add_argument( + '--fold-index', default='True', type=parse_bool, + help='Fold in the spectral index when using GolemFit' + ) + parser.add_argument( '--binning', default=[1e4, 1e7, 5], type=float, nargs=3, help='Binning for spectral energy dependance' ) diff --git a/utils/likelihood.py b/utils/likelihood.py index 70b54c9..cd1ead8 100644 --- a/utils/likelihood.py +++ b/utils/likelihood.py @@ -87,9 +87,9 @@ def triangle_llh(theta, args, asimov_paramset, llh_paramset, fitter): if args.energy_dependance is EnergyDependance.SPECTRAL: bin_centers = np.sqrt(args.binning[:-1]*args.binning[1:]) bin_width = np.abs(np.diff(args.binning)) - if args.likelihood in [Likelihood.GOLEMFIT, Likelihood.GF_FREQ]: - if 'astroDeltaGamma' in hypo_paramset.names: - args.spectral_index = -hypo_paramset['astroDeltaGamma'].value + if args.likelihood in [Likelihood.GOLEMFIT, Likelihood.GF_FREQ] \ + and args.fold_index: + args.spectral_index = -hypo_paramset['astroDeltaGamma'].value if args.fix_source_ratio: if args.energy_dependance is EnergyDependance.MONO: @@ -163,15 +163,18 @@ def triangle_llh(theta, args, asimov_paramset, llh_paramset, fitter): for idx, param in enumerate(hypo_paramset.from_tag(ParamTag.BESTFIT)): param.value = flavour_angles[idx] + print 'llh_paramset', llh_paramset if args.likelihood is Likelihood.FLAT: - return 1. + llh = 1. elif args.likelihood is Likelihood.GAUSSIAN: fr_bf = args.measured_ratio - return multi_gaussian(fr, fr_bf, args.sigma_ratio) + llh = multi_gaussian(fr, fr_bf, args.sigma_ratio) elif args.likelihood is Likelihood.GOLEMFIT: - return gf_utils.get_llh(fitter, hypo_paramset) + llh = gf_utils.get_llh(fitter, hypo_paramset) elif args.likelihood is Likelihood.GF_FREQ: - return gf_utils.get_llh_freq(fitter, hypo_paramset) + lhh = gf_utils.get_llh_freq(fitter, hypo_paramset) + print 'llh', llh + return llh def ln_prob(theta, args, asimov_paramset, llh_paramset, fitter): |
